论文标题

潜在的自动驾驶威胁:通用降雨攻击

Potential Auto-driving Threat: Universal Rain-removal Attack

论文作者

Hu, Jinchegn, Li, Jihao, Hou, Zhuoran, Jiang, Jingjing, Liu, Cunjia, Zhang, Yuanjian

论文摘要

在不利天气条件下鲁棒性的问题被认为是自动驾驶申请人中计算机视觉算法的重大挑战。图像去除算法是解决此问题的一般解决方案。他们通过挖掘隐藏的特征并根据神经网络的强大表示能力来恢复有关无雨环境的信息,从而发现了雨滴/雨水斑stre仪和图像之间的深厚联系。但是,以前的研究集中在建筑创新上,尚未考虑神经网络中已经存在的脆弱性问题。这项研究差距暗示了一种潜在的安全威胁,旨在智能雨中自动驾驶。在本文中,我们提出了一种通用的降雨驱动攻击(URA),以产生非添加的空间扰动,以显着降低场景恢复的相似性和图像质量,以实现图像雨量驱动算法的脆弱性。值得注意的是,这种扰动很难被人类识别,并且对于不同的目标图像也是相同的。因此,URA可以被视为图像降雨驱动算法的脆弱性检测的关键工具。它也可以作为现实世界人工智能攻击方法开发。实验结果表明,URA可以将现场修复能力降低39.5%,并将图像生成质量降低26.4%,以目前可用的最先进的(SOTA)单位雨量降雨驱动算法为目标。

The problem of robustness in adverse weather conditions is considered a significant challenge for computer vision algorithms in the applicants of autonomous driving. Image rain removal algorithms are a general solution to this problem. They find a deep connection between raindrops/rain-streaks and images by mining the hidden features and restoring information about the rain-free environment based on the powerful representation capabilities of neural networks. However, previous research has focused on architecture innovations and has yet to consider the vulnerability issues that already exist in neural networks. This research gap hints at a potential security threat geared toward the intelligent perception of autonomous driving in the rain. In this paper, we propose a universal rain-removal attack (URA) on the vulnerability of image rain-removal algorithms by generating a non-additive spatial perturbation that significantly reduces the similarity and image quality of scene restoration. Notably, this perturbation is difficult to recognise by humans and is also the same for different target images. Thus, URA could be considered a critical tool for the vulnerability detection of image rain-removal algorithms. It also could be developed as a real-world artificial intelligence attack method. Experimental results show that URA can reduce the scene repair capability by 39.5% and the image generation quality by 26.4%, targeting the state-of-the-art (SOTA) single-image rain-removal algorithms currently available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源