论文标题

医学成像中的视觉变压器:评论

Vision Transformers in Medical Imaging: A Review

论文作者

Henry, Emerald U., Emebob, Onyeka, Omonhinmin, Conrad Asotie

论文摘要

Transformer是一个包括基于注意的编码器架构结构的模型,在自然语言处理(NLP)领域已经普遍存在,最近影响了计算机视觉(CV)空间。计算机视觉与医学成像之间的相似之处是否将变压器对计算机视觉的影响转化为医学成像,研究人员之间的相似之处?在本文中,我们试图对变压器在医学成像中的应用进行全面综述;描述了将其与多样性卷积神经网络(CNN)进行比较的变压器模型,详细介绍了基于变压器的医学图像分类,细分,注册和重建的方法,并将重点放在图像模态上,并比较最终的最新变压器体系结构的性能,以在标准医疗数据集中最佳地表现CNN。

Transformer, a model comprising attention-based encoder-decoder architecture, have gained prevalence in the field of natural language processing (NLP) and recently influenced the computer vision (CV) space. The similarities between computer vision and medical imaging, reviewed the question among researchers if the impact of transformers on computer vision be translated to medical imaging? In this paper, we attempt to provide a comprehensive and recent review on the application of transformers in medical imaging by; describing the transformer model comparing it with a diversity of convolutional neural networks (CNNs), detailing the transformer based approaches for medical image classification, segmentation, registration and reconstruction with a focus on the image modality, comparing the performance of state-of-the-art transformer architectures to best performing CNNs on standard medical datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源