论文标题

倒数谐波振荡器的量子不稳定性和eHrenfest时间

Quantum instability and Ehrenfest time for an inverted harmonic oscillator

论文作者

Wang, Shangyun, Chen, Songbai, Jing, Jiliang

论文摘要

我们研究了倒谐波振荡器(IHO)系统中的经典量词对应关系。结果表明,初始状态位于IHO系统中任何位置的超级阶外相关器(OTOC)具有与鞍点相同的指数增长率(EGRS),其EGR是鞍点的经典Lyapunov指数(CLE)的两倍。通过平均光子数和OTOC的时间演变,我们表明IHO系统中的经典量词对应不仅取决于初始系统光子数,而且还取决于相位空间中初始状态的中心位置。此外,我们使用Husimi Q函数可视化OTOC期间的量子波包成倍增长。

We investigate the classical-quantum correspondence in the inverted harmonic oscillator (IHO) system. It is shown that the out-of-time-order correlators (OTOCs) which the initial states are located at any position in the IHO system possess the same exponential growth rates (EGRs) as that at the saddle point, and their EGRs are twice the classical lyapunov exponent (CLE) of the saddle point. Through the time evolution of mean photon number and the OTOCs, we exhibit that the classical-quantum correspondence in the IHO system not only depends on the initial system photon number, but also on the central positions of the initial states in the phase space. Moreover, we use the Husimi Q function to visualize the quantum wave packets during the OTOCs grow exponentially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源