论文标题

小型目标运动检测视觉系统的时空反馈控制

Spatio-Temporal Feedback Control of Small Target Motion Detection Visual System

论文作者

Wang, Hongxin, Zhong, Zhiyan, Lei, Fang, Jing, Xiaohua, Peng, Jigen, Yue, Shigang

论文摘要

反馈对于动物视觉系统的运动感知至关重要,在动物的视觉系统中,其空间和时间动力通常是由周围环境的运动模式塑造的。但是,在设计神经网络以检测出仅覆盖图像中仅一个或几个像素的小型移动目标的同时,在显示出极为有限的视觉特征的同时,尚未深入探索这种时空反馈。在本文中,我们通过开发具有时空反馈回路的视觉系统来解决小型目标运动检测问题,并进一步揭示其在抑制假积极背景运动的同时增强网络对小目标的响应时的重要作用。具体而言,提出的视觉系统由两个互补子网组成。第一个子网旨在通过神经元合奏编码提取混乱背景的空间和时间运动模式。开发了第二个子网,以捕获小型目标运动信息并整合了从第一个子网的时空反馈信号,以抑制背景误报。实验结果表明,所提出的时空反馈视觉系统比现有方法在区分小型移动目标与复杂动态环境方面更具竞争力。

Feedback is crucial to motion perception in animals' visual systems where its spatial and temporal dynamics are often shaped by movement patterns of surrounding environments. However, such spatio-temporal feedback has not been deeply explored in designing neural networks to detect small moving targets that cover only one or a few pixels in image while presenting extremely limited visual features. In this paper, we address small target motion detection problem by developing a visual system with spatio-temporal feedback loop, and further reveal its important roles in suppressing false positive background movement while enhancing network responses to small targets. Specifically, the proposed visual system is composed of two complementary subnetworks. The first subnetwork is designed to extract spatial and temporal motion patterns of cluttered backgrounds by neuronal ensemble coding. The second subnetwork is developed to capture small target motion information and integrate the spatio-temporal feedback signal from the first subnetwork to inhibit background false positives. Experimental results demonstrate that the proposed spatio-temporal feedback visual system is more competitive than existing methods in discriminating small moving targets from complex dynamic environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源