论文标题

BF理论的3个关于同源性的定义3秒

3 Definitions of BF Theory on Homology 3-Spheres

论文作者

Blau, Matthias, Kakona, Mbambu, Thompson, George

论文摘要

具有量规组的3维BF理论$ g $(= chern-simons理论,具有非紧凑型量规$ tg $)是一种看似简单而微妙的拓扑仪表理论。正式地,其分区函数是模量空间$ \ MATHCAL {m} $的平面连接的总和/积分,并由射线手扭转加权。但是,实际上,这种形式的表达几乎总是奇异的且定义不明的。 为了改善这一点,我们直接评估了某些三个序列类别的路径积分(即积分和理性的Seifert同源性领域)。通过适当的量规选择,我们避开了必须集成在$ \ Mathcal {M} $上并将分区函数减少到有限维的Abelian Matrix积分的问题,但是,该功能本身需要定义。我们提供了3个整体定义,首先是通过残基,然后通过相应的$ g \ times g $或$ g_c $ g_c $ chern-simons矩阵积分(以前获得)的$ k $限制。然后,我们检查并讨论结果在何种程度上捕获所有平坦连接上的预期总和/积分。

3-dimensional BF theory with gauge group $G$ (= Chern-Simons theory with non-compact gauge group $TG$) is a deceptively simple yet subtle topological gauge theory. Formally, its partition function is a sum/integral over the moduli space $\mathcal{M}$ of flat connections, weighted by the Ray-Singer torsion. In practice, however, this formal expression is almost invariably singular and ill-defined. In order to improve upon this, we perform a direct evaluation of the path integral for certain classes of 3-manifolds (namely integral and rational Seifert homology spheres). By a suitable choice of gauge, we sidestep the issue of having to integrate over $\mathcal{M}$ and reduce the partition function to a finite-dimensional Abelian matrix integral which, however, itself requires a definition. We offer 3 definitions of this integral, firstly via residues, and then via a large $k$ limit of the corresponding $G\times G$ or $G_C$ Chern-Simons matrix integrals (obtained previously). We then check and discuss to which extent the results capture the expected sum/integral over all flat connections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源