论文标题

广播的时间复杂性及其在动态网络中的变体的渐近界限

Asymptotically Tight Bounds on the Time Complexity of Broadcast and its Variants in Dynamic Networks

论文作者

El-Hayek, Antoine, Henzinger, Monika, Schmid, Stefan

论文摘要

数据传播是分布式计算中的基本任务。本文研究了各种创新模型中的广播问题,在这些模型中,连接$ n $流程的通信网络是动态的(例如,由于移动性或失败,并且由对手控制。 在第一个模型中,该过程沿着对手在每个回合中给出的根树中的同步弹道传达其ID,其目标是最大化回合的数量,直到所有过程都知道至少一个ID。 先前的研究显示了一个$ \ lceil {\ frac {3n-1} {2}}} \ rceil-2 $下限和$ O(n \ log \ log n)$上限。我们显示了此问题的第一个线性上限,即$ \ lceil {(1 + \ sqrt 2)n-1} \ rceil \ rceil \大约2.4n $。 我们将这些结果扩展到了对手在每个回合$ K $ -Dischoint森林中给予的设置,其目标是最大化回合的数量,直到有一组$ K $ ids,以使每个过程都知道至少其中一个。我们给出了$ \ left \ lceil {\ frac {3(n-k)} {2}}} \ right \ rceil-1 $下限和$ \ frac {π^2+6} {6} {6} n+1 \ 1 \ 1 \ 1 \ 1.6n $ younter to ture for这个问题。 最后,我们研究了对手在每个回合中都带有$ k $根的对手提供的设置,其目标是最大化回合的数量,直到存在所有流程所知道的$ k $ id。我们给出了$ \ left \ lceil {\ frac {3(n-3k)} {2}} \ right \ rceil+2 $下限和$ \ lceil {(1+ \ sqrt {2}) 对于后一个问题,以前没有上限或下限。

Data dissemination is a fundamental task in distributed computing. This paper studies broadcast problems in various innovative models where the communication network connecting $n$ processes is dynamic (e.g., due to mobility or failures) and controlled by an adversary. In the first model, the processes transitively communicate their ids in synchronous rounds along a rooted tree given in each round by the adversary whose goal is to maximize the number of rounds until at least one id is known by all processes. Previous research has shown a $\lceil{\frac{3n-1}{2}}\rceil-2$ lower bound and an $O(n\log\log n)$ upper bound. We show the first linear upper bound for this problem, namely $\lceil{(1 + \sqrt 2) n-1}\rceil \approx 2.4n$. We extend these results to the setting where the adversary gives in each round $k$-disjoint forests and their goal is to maximize the number of rounds until there is a set of $k$ ids such that each process knows of at least one of them. We give a $\left\lceil{\frac{3(n-k)}{2}}\right\rceil-1$ lower bound and a $\frac{π^2+6}{6}n+1 \approx 2.6n$ upper bound for this problem. Finally, we study the setting where the adversary gives in each round a directed graph with $k$ roots and their goal is to maximize the number of rounds until there exist $k$ ids that are known by all processes. We give a $\left\lceil{\frac{3(n-3k)}{2}}\right\rceil+2$ lower bound and a $\lceil { (1+\sqrt{2})n}\rceil+k-1 \approx 2.4n+k$ upper bound for this problem. For the two latter problems no upper or lower bounds were previously known.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源