论文标题
工艺:概念递归激活分解以解释性
CRAFT: Concept Recursive Activation FacTorization for Explainability
论文作者
论文摘要
归因方法采用热图来识别影响模型决策的图像中最有影响力的区域,并作为一种解释性方法获得了广泛的普及。但是,最近的研究暴露了这些方法的有限实际价值,部分归因于它们的狭窄关注图像最突出的区域 - 揭示了模型看起来“位置”,但未能阐明“模型”在这些区域中看到的内容。在这项工作中,我们试图用工艺填补这一空白 - 一种新颖的方法,可以通过生成基于概念的解释来识别“什么”和“哪里”。我们向自动概念提取文献介绍了3种新成分:(i)一种递归策略,用于检测和分解跨层次的概念,(ii)一种更忠实地使用SOBOL指数来更忠实地估算概念重要性的新方法,以及(iii)使用隐式区别来解锁概念属性图。 我们进行人类和计算机视觉实验,以证明所提出的方法的好处。我们表明,所提出的概念重要性估计技术比以前的方法更忠实于模型。在评估该方法对人类实验者对以人为中心的实用性基准测试的有用性时,我们发现我们的方法在三种测试场景中的两个中都显着改善。我们的代码可在github.com/deel-ai/craft上免费获得。
Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity as a type of explainability method. However, recent research has exposed the limited practical value of these methods, attributed in part to their narrow focus on the most prominent regions of an image -- revealing "where" the model looks, but failing to elucidate "what" the model sees in those areas. In this work, we try to fill in this gap with CRAFT -- a novel approach to identify both "what" and "where" by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on a human-centered utility benchmark, we find that our approach significantly improves on two of the three test scenarios. Our code is freely available at github.com/deel-ai/Craft.