论文标题

使用自适应网状精炼从全球拓扑弦上进行的辐射:大量模式

Radiation from Global Topological Strings using Adaptive Mesh Refinement: Massive Modes

论文作者

Drew, Amelia, Shellard, E. P. S.

论文摘要

我们使用公共代码Grchombo实施了全球拓扑字符串的自适应网格改进(AMR)。我们对单个正弦曲线式弦构型的大规模辐射进行了定量研究,研究了两个数量级的耦合参数$λ$定义的弦宽度范围,从而有效地改变了辐射粒子的质量$ m_h \ sim \ sim \ sim \ sim \sqrtλ$。我们对AMR对大规模辐射发射的影响进行深入研究,包括辐射陷阱和解决高频模式所需的改进。我们使用定量诊断工具来确定本本特征分解,显示具有不同阶段和组速度的高频传播模式的复杂叠加。我们得出的结论是,相对于首选的无质量通道,通常会强烈抑制大量辐射,在较低的幅度和较高的$λ$下,抑制作用增加。只有在极端的非线性制度(例如\ \具有相对幅度$ \ varepsilon \ sim 1.5 $和$λ<1 $)中,我们才会观察到巨大的和无质量的辐射,以相当的幅度发射。我们发现,巨大的辐射是在弦的基本频率的不同高谐波中发出的,我们证明,对于研究的正弦构型,大规模辐射被$ \sqrtλ$(即粒子质量)置于指数抑制。最后,我们将这些结果放置在宇宙宇宙弦乐网络产生的轴和重力波的背景下,并注意AMR提供了一个重要的机会,可以探索更高的$λ$(薄弦)制度,而使用较少的计算资源。

We implement adaptive mesh refinement (AMR) simulations of global topological strings using the public code, GRChombo. We perform a quantitative investigation of massive radiation from single sinusoidally displaced string configurations, studying a range of string widths defined by the coupling parameter $λ$ over two orders of magnitude, effectively varying the mass of radiated particles $m_H \sim \sqrtλ$. We perform an in-depth investigation into the effects of AMR on massive radiation emission, including radiation trapping and the refinement required to resolve high frequency modes. We use quantitative diagnostic tools to determine the eigenmode decomposition, showing a complex superposition of high frequency propagating modes with different phase and group velocities. We conclude that massive radiation is generally strongly suppressed relative to the preferred massless channel, with suppression increasing at lower amplitudes and higher $λ$. Only in extreme nonlinear regimes (e.g.\ with relative amplitude $\varepsilon \sim 1.5$ and $λ< 1$) do we observe massive and massless radiation to be emitted at comparable magnitude. We find that massive radiation is emitted in distinct high harmonics of the fundamental frequency of the string, and we demonstrate that, for the sinusoidal configurations studied, massive radiation is exponentially suppressed with $\sqrtλ$ (i.e. the particle mass). Finally, we place these results in the context of axions and gravitational waves produced by cosmological cosmic string networks, and note that AMR provides a significant opportunity to explore higher $λ$ (thin string) regimes whilst using fewer computational resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源