论文标题

一个新的无限家族$σ$ - 质子戒指

A new infinite family of $σ$-elementary rings

论文作者

Swartz, Eric, Werner, Nicholas J.

论文摘要

协会的封面(不一定是可交换或Unital)环$ r $是$ r $的适当子圈的集合,其设定理论的联盟等于$ r $。如果存在这样的盖子,则$ r $的覆盖号$σ(r)$是最小盖子的基础性,如果对于每个非零的两边$ i $ $ r $ $ $ r $ $ $ r $ $σ(r)<σ(r)<σ(r)<σ(r)<σ(r/i)$,则称为$σ$ - elementary。在本文中,我们提供了$σ$ - 元素环$ r $的第一个示例,这些$ r $具有非平凡的Jacobson Radical $ j $,$ r/j $ noncomputative,我们确定了这些环的覆盖号码。

A cover of an associative (not necessarily commutative nor unital) ring $R$ is a collection of proper subrings of $R$ whose set-theoretic union equals $R$. If such a cover exists, then the covering number $σ(R)$ of $R$ is the cardinality of a minimal cover, and a ring $R$ is called $σ$-elementary if $σ(R) < σ(R/I)$ for every nonzero two-sided ideal $I$ of $R$. In this paper, we provide the first examples of $σ$-elementary rings $R$ that have nontrivial Jacobson radical $J$ with $R/J$ noncommutative, and we determine the covering numbers of these rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源