论文标题

在随机设置中,不确定性感知数据驱动的预测控制

Uncertainty-aware data-driven predictive control in a stochastic setting

论文作者

Breschi, Valentina, Fabris, Marco, Formentin, Simone, Chiuso, Alessandro

论文摘要

数据驱动的预测控制(DDPC)最近被认为是传统模型预测控制(MPC)的有效替代方案,因为可以解决相同的约束优化问题而无需明确识别植物的完整模型。但是,DDPC建立在输入/输出轨迹的基础上。因此,由于测量噪声,随机数据的有限样本效应可能对闭环性能产生不利影响。利用对预测误差的形式统计分析,在本文中,我们提出了第一种系统的系统方法来处理由于有限的样本效应而导致的不确定性。为此,我们介绍了两种正则化策略,与现有的基于正则化的DDPC技术不同,我们提出了一个调谐原理,使我们能够在关闭循环之前和没有其他实验之前选择正则化超参数。仿真结果证实了关闭循环时提出的策略的潜力。

Data-Driven Predictive Control (DDPC) has been recently proposed as an effective alternative to traditional Model Predictive Control (MPC), in that the same constrained optimization problem can be addressed without the need to explicitly identify a full model of the plant. However, DDPC is built upon input/output trajectories. Therefore, the finite sample effect of stochastic data, due to, e.g., measurement noise, may have a detrimental impact on closed-loop performance. Exploiting a formal statistical analysis of the prediction error, in this paper we propose the first systematic approach to deal with uncertainty due to finite sample effects. To this end, we introduce two regularization strategies for which, differently from existing regularization-based DDPC techniques, we propose a tuning rationale allowing us to select the regularization hyper-parameters before closing the loop and without additional experiments. Simulation results confirm the potential of the proposed strategy when closing the loop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源