论文标题
关于Waring的更大权力的问题
On Waring's problem for larger powers
论文作者
论文摘要
令$ g(k)$表示最少的$ s $,拥有每个足够大的自然数量的财产,最多是$ s $ sug-s $积分$ k $ - th powers。然后,对于所有$ k \ in \ mathbb n $,一个人具有\ [g(k)\ le \ lceil k(\ log k+k+4.20032)\ rceil。 \]当$ k \ ge 14 $时,我们的新方法对所有可用界限有所改善。
Let $G(k)$ denote the least number $s$ having the property that every sufficiently large natural number is the sum of at most $s$ positive integral $k$-th powers. Then for all $k\in \mathbb N$, one has \[ G(k)\le \lceil k(\log k+4.20032)\rceil . \] Our new methods improve on all bounds available hitherto when $k\ge 14$.