论文标题

用自旋轨道耦合量子气体挤压并克服海森堡缩放

Squeezing and overcoming the Heisenberg scaling with spin-orbit coupled quantum gases

论文作者

Gietka, Karol, Ritsch, Helmut

论文摘要

我们预测,在谐波捕获的旋转量子气中利用自旋轨道耦合会导致最佳测量精度缩放在海森堡缩放范围之外。我们表明,可以使用一维旋转轨耦合的费米子或强烈相互作用的玻色子(Tonks-Girardeau Gas)来促进与原子数量的二次缩放。基于从相应的量子Fisher信息的分析计算得出的预测,然后我们引入了一项方案,该方案通过量身定制的激发和纠缠的非相互作用的Bose-Einstein冷凝物的量身定制和纠缠的多体状态来克服Heisenberg缩放(和限制)。我们确定相应的最佳测量结果,并认为即使是有限温度作为矫正来源,原则上也有利于可获得的精度缩放。

We predict that exploiting spin-orbit coupling in a harmonically trapped spinor quantum gas can lead to scaling of the optimal measurement precision beyond the Heisenberg scaling. We show that quadratic scaling with the number of atoms can be facilitated via squeezed center-of-mass excitations of the atomic motion using a 1D spin-orbit coupled fermions or strongly interacting bosons (Tonks-Girardeau gas). Based on predictions derived from analytic calculations of the corresponding quantum Fisher information, we then introduce a protocol which overcomes the Heisenberg scaling (and limit) with help of a tailored excited and entangled many-body state of a non-interacting Bose-Einstein condensate. We identify corresponding optimal measurements and argue that even finite temperature as a source of decoherence is, in principle, rather favorable for the obtainable precision scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源