论文标题
分析性预处理,用于脱钩的潜在积分方程和PEC对象散射的宽带分析
Analytic preconditioners for decoupled potential integral equations and wideband analysis of scattering from PEC objects
论文作者
论文摘要
用于分析散射的许多积分方程,例如标准组合集成方式(CFIE),对于广泛的频率和多尺度几何形状而言,没有很好的条件。为了减轻这个问题而付出了巨大的努力。最近的一个是使用一组脱钩的潜在积分方程(DPIE)。这些方程已被证明在低频率下具有稳健性,并且可以免疫拓扑分解。但是他们模仿了CFIE在高频上的不良条件行为。本文通过从矢量电位积分方程(VPIE)得出的新calderón类型身份来解决这种缺陷。我们构建了构造针对媒介电位积分方程(VPIE)和标量势积分方程(SPIE)的新型分析预调节器,这些方程(SPIE)限制为完美的电导体(PEC)。这些新的配方具有宽带良好的条件,并且对于多尺度的几何形状而迅速收敛。通过许多使用分析和分段基集的示例,这证明了这一点。
Many integral equations used to analyze scattering, such as the standard combined field integral equation (CFIE), are not well-conditioned for a wide range of frequencies and multi-scale geometries. There has been significant effort to alleviate this problem. A more recent one is using a set of decoupled potential integral equations (DPIE). These equations have been shown to be robust at low frequencies and immune to topology breakdown. But they mimic the ill-conditioning behavior of CFIE at high frequencies. This paper addresses this deficiency through new Calderón-type identities derived from the Vector Potential Integral Equation (VPIE). We construct novel analytic preconditioners for the vector potential integral equation (VPIE) and scalar potential integral equation (SPIE) constrained to perfect electric conductors (PEC). These new formulations are wide-band well-conditioned and converge rapidly for multi-scale geometries. This is demonstrated though a number of examples that use analytic and piecewise basis sets.