论文标题
缩减表示形式事项:通过协作缩小图像改进图像重新缩放
Downscaled Representation Matters: Improving Image Rescaling with Collaborative Downscaled Images
论文作者
论文摘要
深层网络在图像重新续订(IR)任务中取得了巨大的成功,该任务旨在学习最佳的缩小表示形式,即低分辨率(LR)图像,以重建原始的高分辨率(HR)图像。与考虑固定降尺度方案的超分辨率方法相比,Bicubic,IR通常通过学识渊博的降尺度表示,通常会取得更好的重建性能。这突出了图像重建任务中良好的缩小表示形式的重要性。现有的IR方法主要通过共同优化缩小和放大模型来学习缩小的表示。与他们不同,我们试图通过一种不同的,更直接的方式来改善缩小的表示形式:优化缩小的图像本身,而不是降低/升级模型。具体而言,我们提出了一个协作缩减方案,该方案通过下降W.R.T.直接生成协作LR示例。对它们的重建损失使IR过程受益。此外,由于LR图像是从相应的HR图像中缩小的,因此,如果我们在HR域中具有更好的表示形式,也可以改善缩小的表示形式。受此启发的启发,我们提出了一种分层协作降压(HCD)方法,该方法在人力资源和LR域中执行梯度下降以改善缩小的表示。广泛的实验表明,我们的HCD显着改善了定量和定性的重建性能。此外,我们还强调了HCD的灵活性,因为它可以很好地跨越不同的IR模型。
Deep networks have achieved great success in image rescaling (IR) task that seeks to learn the optimal downscaled representations, i.e., low-resolution (LR) images, to reconstruct the original high-resolution (HR) images. Compared with super-resolution methods that consider a fixed downscaling scheme, e.g., bicubic, IR often achieves significantly better reconstruction performance thanks to the learned downscaled representations. This highlights the importance of a good downscaled representation in image reconstruction tasks. Existing IR methods mainly learn the downscaled representation by jointly optimizing the downscaling and upscaling models. Unlike them, we seek to improve the downscaled representation through a different and more direct way: optimizing the downscaled image itself instead of the down-/upscaling models. Specifically, we propose a collaborative downscaling scheme that directly generates the collaborative LR examples by descending the gradient w.r.t. the reconstruction loss on them to benefit the IR process. Furthermore, since LR images are downscaled from the corresponding HR images, one can also improve the downscaled representation if we have a better representation in the HR domain. Inspired by this, we propose a Hierarchical Collaborative Downscaling (HCD) method that performs gradient descent in both HR and LR domains to improve the downscaled representations. Extensive experiments show that our HCD significantly improves the reconstruction performance both quantitatively and qualitatively. Moreover, we also highlight the flexibility of our HCD since it can generalize well across diverse IR models.