论文标题
磁化泰勒 - 库特流中磁化不稳定性的非线性演变:缩放特性和与即将到来的dresdyn-MRI实验的关系
Nonlinear evolution of magnetorotational instability in a magnetized Taylor-Couette flow: scaling properties and relation to upcoming DRESDYN-MRI experiment
论文作者
论文摘要
磁化不稳定性(MRI)是驱动天体物理磁盘中角动量转运的最可能机制。但是,尽管做出了许多努力,但仍然缺少MRI的最终实验证据。最近,用轴向磁场对标准MRI(SMRI)进行1D线性分析(SMRI),我们表明在即将到来的Dresdyn-MRI实验中可以检测到SMRI,基于液态钠的磁化TC流。在这项研究中,也与Dresdyn-MRI实验有关,我们专注于SMRI的非线性演化和饱和特性,并分析了其相对于TC流的主要参数的缩放行为。我们对[8.5,37.1] $,lundquist Number number $ lu \ in [1.5,15.5] $ and Reynolds编号,$ re \ in [10^3,10^5] $进行了详细分析。我们考虑了小磁性prandtl数字,$ pm \ ll 1 $,降低至$ pm \ sim \ sim 10^{ - 4} $,旨在实验中典型的液体钠的值。在饱和状态下,由于圆柱体上的扰动而引起的SMRI和扭矩的磁能,其特征是角动量传输的特征,均以$ RM $ $ $ $ $ $ $的增加(LU,RE)$增加,而对于固定$(LU,RM)$,磁能减少和扭矩随着$ $ $ $的增加而增加。我们研究了饱和状态下的磁能和扭矩的缩放,这是$ re $的函数,并找到了磁能的功率定律依赖性$ re^{ - 0.6 ...- 0.5} $,在所有$(lu,rm,rm)$和High $ re re feq的扭矩和$ re^{0.4 ... 0.4 ... 0.5} $中。我们还探讨了圆柱体对隆德奎斯特数量和角速度的依赖性。这些缩放定律将在随后对更现实的有限长度TC流以及数值结果与从Dresdyn-MRI实验中获得的结果进行比较,以明确识别实验室中的SMRI的结果。
Magnetorotational instability (MRI) is the most likely mechanism driving angular momentum transport in astrophysical disks. However, despite many efforts, a conclusive experimental evidence of MRI is still missing. Recently, performing 1D linear analysis of the standard MRI (SMRI) in a cylindrical Taylor-Couette (TC) flow with an axial magnetic field, we showed that SMRI can be detected in the upcoming DRESDYN-MRI experiment based on a magnetized TC flow of liquid sodium. In this study, also related to DRESDYN-MRI experiments, we focused on the nonlinear evolution and saturation properties of SMRI and analyzed its scaling behavior with respect to the main parameters of the TC flow. We did a detailed analysis over the extensive ranges of magnetic Reynolds number $Rm\in [8.5, 37.1]$, Lundquist number $Lu\in[1.5, 15.5]$ and Reynolds number, $Re\in[10^3, 10^5]$. We considered small magnetic Prandtl numbers, $Pm \ll 1$, down to $Pm\sim 10^{-4}$, aiming at values typical of liquid sodium in the experiments. In the saturated state, the magnetic energy of SMRI and torque due to perturbations on the cylinders, which characterizes angular momentum transport, both increase with $Rm$ for fixed $(Lu, Re)$, while for fixed $(Lu, Rm)$, the magnetic energy decreases and torque increases with increasing $Re$. We studied the scaling of the magnetic energy and torque in the saturated state as a function of $Re$ and find a power law dependence $Re^{-0.6...-0.5}$ for the magnetic energy and $Re^{0.4...0.5}$ for the torque at all $(Lu, Rm)$ and high $Re\geq 4000$. We also explored the dependence on Lundquist number and angular velocity of the cylinders. These scaling laws will be instrumental in the subsequent analysis of more realistic finite-length TC flows and comparison of numerical results with those obtained from the DRESDYN-MRI experiments to unambiguously identify SMRI in laboratory.