论文标题
群集多态当前状态数据的伪值回归具有信息群集大小
Pseudo-value regression of clustered multistate current status data with informative cluster sizes
论文作者
论文摘要
由于研究参与者在随机检查时间内通过一系列定义明确的疾病状态过渡的研究参与者的单一观察,多态当前状态(CS)数据呈现出更严重的审查形式。此外,这些数据可能聚集在指定的组中,并且由于过渡结果与群集大小之间的现有潜在关系,可能会出现群集大小的信息。未能调整这种信息性可能会导致推理有偏见。在牙周疾病(PD)的临床研究中,我们提出了伪价值方法的扩展,以估计这些聚类的多阶层CS数据对国家占领概率(SOP)的协变性影响,该数据具有信息性群集或群集内组尺寸。在我们的方法中,提出的伪值技术最初使用非参数回归计算SOP的边际估计器。接下来,基于相应的伪值的估计方程将通过群集大小的功能重新持续,以调整信息性。我们进行了各种模拟研究,以根据不同方面的信息,研究基于非参数边缘估计量的伪值回归的性能。为了说明,该方法应用于激励的PD数据集,该数据集封装了复杂的数据生成机制。
Multistate current status (CS) data presents a more severe form of censoring due to the single observation of study participants transitioning through a sequence of well-defined disease states at random inspection times. Moreover, these data may be clustered within specified groups, and informativeness of the cluster sizes may arise due to the existing latent relationship between the transition outcomes and the cluster sizes. Failure to adjust for this informativeness may lead to a biased inference. Motivated by a clinical study of periodontal disease (PD), we propose an extension of the pseudo-value approach to estimate covariate effects on the state occupation probabilities (SOP) for these clustered multistate CS data with informative cluster or intra-cluster group sizes. In our approach, the proposed pseudo-value technique initially computes marginal estimators of the SOP utilizing nonparametric regression. Next, the estimating equations based on the corresponding pseudo-values are reweighted by functions of the cluster sizes to adjust for informativeness. We perform a variety of simulation studies to study the properties of our pseudo-value regression based on the nonparametric marginal estimators under different scenarios of informativeness. For illustration, the method is applied to the motivating PD dataset, which encapsulates the complex data-generation mechanism.