论文标题
使用基于扩散的生成模型的微观结构重建
Microstructure reconstruction using diffusion-based generative models
论文作者
论文摘要
微结构重建一直是计算材料工程的重要组成部分,以揭示微观结构与材料属性之间的关系。但是,尽管有许多尝试,例如基于描述符的MCR方法,但找到微观结构表征和重建(MCR)任务的一般解决方案仍然具有挑战性。为了解决这个普遍性问题,在本研究中首先采用了降级扩散模型。基于扩散的模型的适用性通过具有不同形态特征不同的几种类型的微观结构(例如,多种类型的微结构(例如,多晶合金,碳酸盐,碳酸盐,陶瓷,共聚物,纤维复合材料等)验证。通过定量评估指标(FID得分,精度和召回)以及常规的统计微结构描述来评估生成图像的质量。此外,采用了隐式概率模型(产生非马克维亚扩散过程)的制定来加速采样过程,从而考虑了可实用性和可靠性的计算成本。结果表明,denoising扩散模型非常适用于具有不同空间分布和形态特征的各种类型的微观结构的重建。基于扩散的方法提供了一个稳定的训练过程,并具有简单的实现,以生成视觉上相似和统计上等效的微结构。在这些方面,扩散模型具有很大的潜力,可以用作一种通用微结构重建方法来处理用于材料科学的复杂微观结构。
Microstructure reconstruction has been an essential part of computational material engineering to reveal the relationship between microstructures and material properties. However, finding a general solution for microstructure characterization and reconstruction (MCR) tasks is still challenging, although there have been many attempts such as the descriptor-based MCR methods. To address this generality problem, the denoising diffusion models are first employed for the microstructure reconstruction task in this study. The applicability of the diffusion-based models is validated with several types of microstructures (e.g., polycrystalline alloy, carbonate, ceramics, copolymer, fiber composite, etc.) that have different morphological characteristics. The quality of the generated images is assessed with the quantitative evaluation metrics (FID score, precision, and recall) and the conventional statistical microstructure descriptors. Furthermore, the formulation of implicit probabilistic models (which yields non-Markovian diffusion processes) is adopted to accelerate the sampling process, thereby controlling the computational cost considering the practicability and reliability. The results show that the denoising diffusion models are well applicable to the reconstruction of various types of microstructures with different spatial distributions and morphological features. The diffusion-based approach provides a stable training process with simple implementation for generating visually similar and statistically equivalent microstructures. In these regards, the diffusion model has great potential to be used as a universal microstructure reconstruction method for handling complex microstructures for materials science.