论文标题
动机频谱的二次艺术指挥
The quadratic Artin conductor of a motivic spectrum
论文作者
论文摘要
鉴于动机频谱$ k $在平稳的适当方案上是可以在开放式亚气管上进行对齐的,我们根据某些假设定义了其二次Artin指挥,并证明了与$ K $的二次欧拉特特征相关的公式,$ k $的等级,$ k $和Quadratic Artin指挥。结果,我们获得了经典的Grothendieck-Ogg-Shafarevich公式的二次改进。
Given a motivic spectrum $K$ over a smooth proper scheme which is dualizable over an open subscheme, we define its quadratic Artin conductor under some assumptions, and prove a formula relating the quadratic Euler characteristic of $K$, the rank of $K$ and the quadratic Artin conductor. As a consequence, we obtain a quadratic refinement of the classical Grothendieck-Ogg-Shafarevich formula.