论文标题

POINTRESNET:用于3D点云进行分割和分类的残差网络

PointResNet: Residual Network for 3D Point Cloud Segmentation and Classification

论文作者

Desai, Aadesh, Parikh, Saagar, Kumari, Seema, Raman, Shanmuganathan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Point cloud segmentation and classification are some of the primary tasks in 3D computer vision with applications ranging from augmented reality to robotics. However, processing point clouds using deep learning-based algorithms is quite challenging due to the irregular point formats. Voxelization or 3D grid-based representation are different ways of applying deep neural networks to this problem. In this paper, we propose PointResNet, a residual block-based approach. Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks. The main components of the architecture are: 1) residual blocks and 2) multi-layered perceptron (MLP). We show that it preserves profound features and structural information, which are useful for segmentation and classification tasks. The experimental evaluations demonstrate that the proposed model produces the best results for segmentation and comparable results for classification in comparison to the conventional baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源