论文标题

部分可观测时空混沌系统的无模型预测

DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding

论文作者

Lin, Haitao, Huang, Yufei, Zhang, Odin, Ma, Siqi, Liu, Meng, Li, Xuanjing, Wu, Lirong, Wang, Jishui, Hou, Tingjun, Li, Stan Z.

论文摘要

在药物发现中产生与特定蛋白质结合的分子是一项重要但具有挑战性的任务。以前的作品通常以自动回归方式生成原子,其中元素类型和3D原子的坐标是一个一个生成的。但是,在现实世界分子系统中,整个分子中原子之间的相互作用是全球的,导致能量函数对耦合在原子之间。通过这种基于能量的考虑,概率的建模应基于关节分布,而不是依次有条件的分布。因此,分子产生的非天然自动回归建模可能违反了物理规则,从而导致产生的分子的性质差。在这项工作中,基于目标蛋白作为上下文约束的分子3D结构的生成扩散模型以非自动性回忆的方式建立。给定指定的3D蛋白结合位点,我们的模型了解了具有均等网络的整个分子的元素类型和3D坐标的生成过程。在实验上,与蛋白质高亲和力相比,所提出的方法显示出竞争性能,与蛋白质和适当的分子大小以及其他药物特性(如产生的分子的药物类似)相比。

Generating molecules that bind to specific proteins is an important but challenging task in drug discovery. Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one. However, in real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms. With such energy-based consideration, the modeling of probability should be based on joint distributions, rather than sequentially conditional ones. Thus, the unnatural sequentially auto-regressive modeling of molecule generation is likely to violate the physical rules, thus resulting in poor properties of the generated molecules. In this work, a generative diffusion model for molecular 3D structures based on target proteins as contextual constraints is established, at a full-atom level in a non-autoregressive way. Given a designated 3D protein binding site, our model learns the generative process that denoises both element types and 3D coordinates of an entire molecule, with an equivariant network. Experimentally, the proposed method shows competitive performance compared with prevailing works in terms of high affinity with proteins and appropriate molecule sizes as well as other drug properties such as drug-likeness of the generated molecules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源