论文标题

部分可观测时空混沌系统的无模型预测

Boosting the Transferability of Adversarial Attacks with Global Momentum Initialization

论文作者

Wang, Jiafeng, Chen, Zhaoyu, Jiang, Kaixun, Yang, Dingkang, Hong, Lingyi, Guo, Pinxue, Guo, Haijing, Zhang, Wenqiang

论文摘要

深度神经网络(DNN)容易受到对抗性例子的影响,这些例子是通过在良性输入中添加人类侵蚀的扰动来制定的。同时,对抗性示例跨模型表现出可转移性,从而实现了实用的黑盒攻击。但是,现有方法仍然无法实现所需的转移攻击性能。在这项工作中,专注于梯度优化和一致性,我们分析了梯度消除现象以及局部动量的最佳难题。为了应对这些挑战,我们引入了全球动量初始化(GI),提供全球动量知识以减轻梯度消除。具体而言,我们在攻击前进行梯度前的渐进率,并在此阶段进行全局搜索。 GI与现有转移方法无缝集成,与最先进的方法相比,在各种高级防御机制下,在各种高级防御机制下,转移攻击的成功率平均增加了6.4%。最终,GI在图像和视频攻击域中都表现出强大的可传递性。特别是,当攻击图像域中的高级防御方法时,它的平均攻击成功率为95.4%。该代码可在$ \ href {https://github.com/omenzychen/global-momentum-initialization} {https://github.com/omenzychen/global-momentum-initialization} $。

Deep Neural Networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding human-imperceptible perturbations to the benign inputs. Simultaneously, adversarial examples exhibit transferability across models, enabling practical black-box attacks. However, existing methods are still incapable of achieving the desired transfer attack performance. In this work, focusing on gradient optimization and consistency, we analyse the gradient elimination phenomenon as well as the local momentum optimum dilemma. To tackle these challenges, we introduce Global Momentum Initialization (GI), providing global momentum knowledge to mitigate gradient elimination. Specifically, we perform gradient pre-convergence before the attack and a global search during this stage. GI seamlessly integrates with existing transfer methods, significantly improving the success rate of transfer attacks by an average of 6.4% under various advanced defense mechanisms compared to the state-of-the-art method. Ultimately, GI demonstrates strong transferability in both image and video attack domains. Particularly, when attacking advanced defense methods in the image domain, it achieves an average attack success rate of 95.4%. The code is available at $\href{https://github.com/Omenzychen/Global-Momentum-Initialization}{https://github.com/Omenzychen/Global-Momentum-Initialization}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源