论文标题

部分可观测时空混沌系统的无模型预测

Computationally Efficient Approach for Preheating of Battery Electric Vehicles before Fast Charging in Cold Climates

论文作者

Hamednia, Ahad, Forsman, Jimmy, Murgovski, Nikolce, Larsson, Viktor, Fredriksson, Jonas

论文摘要

本文在快速充电前调查电池预热,以便在寒冷的气候下驾驶电池电动汽车(BEV)。为了防止电池在低温下的性能降解,已经考虑了热管理(TM)系统,包括用于电池和机舱隔室加热的高压冷却液加热器(HVCH)。因此,已经以非线性程序(NLP)的形式制定了最佳控制问题(OCP),旨在最大程度地减少电池的总能耗。这里的主要重点是开发一种计算高效的方法,模仿最佳的预热行为,而不会显着增加总能耗。所提出的算法很简单,可以通过消除求解整个NLP的需求仅在总能源消耗增加1WH的成本中实现在车辆的低级电子控制单元中。

This paper investigates battery preheating before fast charging, for a battery electric vehicle (BEV) driving in a cold climate. To prevent the battery from performance degradation at low temperatures, a thermal management (TM) system has been considered, including a high-voltage coolant heater (HVCH) for the battery and cabin compartment heating. Accordingly, an optimal control problem (OCP) has been formulated in the form of a nonlinear program (NLP), aiming at minimising the total energy consumption of the battery. The main focus here is to develop a computationally efficient approach, mimicking the optimal preheating behavior without a noticeable increase in the total energy consumption. The proposed algorithm is simple enough to be implemented in a low-level electronic control unit of the vehicle, by eliminating the need for solving the full NLP in the cost of only 1Wh increase in the total energy consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源