论文标题
特殊和非凡遗传批判性的古典量词对应:小人的桥梁
Classical-quantum correspondence of special and extraordinary-log criticality: Villain's bridge
论文作者
论文摘要
最近在外来表面临界行为上取得了很多进展,但是特殊和非凡的关键性的经典量词对应关系仍然在很大程度上不清楚。使用蠕虫蒙特卡洛模拟,我们探索了小人代表中出现的超级流体绝缘子临界点的表面临界点,据信这可以连接经典和量子O(2)关键系统。我们分别观察到使用热和磁重新归一化指数的特殊过渡$ y_t = 0.58(1)$和$ y_h = 1.690(1)$,这与具有离散旋转变量的模型的最新估计值接近。从两点相关性中的关键指数$ \ hat {q} = 0.58(2)$从两点相关性和重新归一化的组参数$α= 0.28(1)$中的关键指数$ \ hat = 0.58(2)$证明了非凡的普遍性的存在。 Bose-Hubbard模型。我们的结果桥梁在经典统计机械模型中对表面临界行为的最新观察结果[Parisen Teldin,Phys。莱特牧师。 126,135701(2021); Hu $ et $ $ al。$,同上。$ 127,120603(2021); Parisen告诉In $ et $ $ al。 Rev. B 106,224502(2022)]。
There has been much recent progress on exotic surface critical behavior, yet the classical-quantum correspondence of special and extraordinary-log criticality remains largely unclear. Employing worm Monte Carlo simulations, we explore the surface criticality at an emergent superfluid-Mott insulator critical point in the Villain representation, which is believed to connect classical and quantum O(2) critical systems. We observe a special transition with the thermal and magnetic renormalization exponents $y_t=0.58(1)$ and $y_h=1.690(1)$ respectively, which are close to recent estimates from models with discrete spin variables. The existence of extraordinary-log universality is evidenced by the critical exponent $\hat{q}=0.58(2)$ from two-point correlation and the renormalization-group parameter $α=0.28(1)$ from superfluid stiffness, which obey the scaling relation of extraordinary-log critical theory and recover the logarithmic finite-size scaling of critical superfluid stiffness in open-edge quantum Bose-Hubbard model. Our results bridge recent observations of surface critical behavior in the classical statistical mechanical models [Parisen Toldin, Phys. Rev. Lett. 126, 135701 (2021); Hu $et$ $al.$, $ibid.$ 127, 120603 (2021); Parisen Toldin $et$ $al.$, $ibid.$ 128, 215701 (2022)] and the open-edge quantum Bose-Hubbard model [Sun $et$ $al.$, Phys. Rev. B 106, 224502 (2022)].