论文标题

磁性材料的一般时间反转的神经网络潜力

General time-reversal equivariant neural network potential for magnetic materials

论文作者

Yu, Hongyu, Liu, Boyu, Zhong, Yang, Hong, Liangliang, Ji, Junyi, Xu, Changsong, Gong, Xingao, Xiang, Hongjun

论文摘要

这项研究介绍了时间反转E(3) - 等效性神经网络和Spingnn ++框架,用于构建磁系统的综合原子间潜力,包括旋转轨道耦合和非共线磁矩。 spingnn ++将多项旋转的神经网络与明确的自旋式术语相结合,包括海森堡,dzyaloshinskii-moriya,kitaev,kitaev,单离子各向异性和生物quadratic互动,以及使用高度逆向旋转式互动的时间逆向旋转式互动(使用高度旋转型旋转式互动)。为了验证spingnn ++,将一个复杂的磁模型数据集作为基准引入,并用于证明其功能。 Spingnn ++提供了单层CRI $ _3 $和CRTE $ _2 $中复杂的自旋晶格耦合的准确描述,从而达到了子MEV错误。重要的是,它促进了大规模平行的自旋晶格动力学,从而实现了相关特性的探索,包括磁接地态和相变。值得注意的是,Spingnn ++将新的铁磁状态鉴定为单层CRTE2的地面磁态,从而丰富其相图并提供更深入的见解,以了解各种实验中观察到的独特的磁信号。

This study introduces time-reversal E(3)-equivariant neural network and SpinGNN++ framework for constructing a comprehensive interatomic potential for magnetic systems, encompassing spin-orbit coupling and noncollinear magnetic moments. SpinGNN++ integrates multitask spin equivariant neural network with explicit spin-lattice terms, including Heisenberg, Dzyaloshinskii-Moriya, Kitaev, single-ion anisotropy, and biquadratic interactions, and employs time-reversal equivariant neural network to learn high-order spin-lattice interactions using time-reversal E(3)-equivariant convolutions. To validate SpinGNN++, a complex magnetic model dataset is introduced as a benchmark and employed to demonstrate its capabilities. SpinGNN++ provides accurate descriptions of the complex spin-lattice coupling in monolayer CrI$_3$ and CrTe$_2$, achieving sub-meV errors. Importantly, it facilitates large-scale parallel spin-lattice dynamics, thereby enabling the exploration of associated properties, including the magnetic ground state and phase transition. Remarkably, SpinGNN++ identifies a new ferrimagnetic state as the ground magnetic state for monolayer CrTe2, thereby enriching its phase diagram and providing deeper insights into the distinct magnetic signals observed in various experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源