论文标题
联合源通道编码系统中的能力优化的资源分配
Resource Allocation for Capacity Optimization in Joint Source-Channel Coding Systems
论文作者
论文摘要
从深度学习(DL)技术的进步中受益,Deep联合源通道编码(JSCC)表明了其提高无线传输性能的巨大潜力。但是,大多数现有作品都集中在JSCC模型的基于DL的收发器设计上,同时忽略了无线系统中的资源分配问题。在本文中,我们考虑了一个下行链路资源分配问题,其中基站(BS)共同优化了根据延迟和绩效约束,将每个用户的压缩比(CR)和功率分配以及资源块(RB)分配,以最大程度地提高其成功接收其要求的内容质量的用户数量。为了解决这个问题,我们首先将其分解为两个子问题,而不会丧失最佳性。第一个子问题是在给定的RB分配下为每个用户提供所需的传输功率。我们通过搜索最大可行的压缩比来得出最佳传输功率的闭合形式表达。第二个旨在通过最佳的用户RB配对来最大化受支持用户的数量,我们通过使用分配搜索以及Karmarka的算法来解决这些数量。仿真结果根据给定资源的满意用户数量验证了提出的资源分配方法的有效性。
Benefited from the advances of deep learning (DL) techniques, deep joint source-channel coding (JSCC) has shown its great potential to improve the performance of wireless transmission. However, most of the existing works focus on the DL-based transceiver design of the JSCC model, while ignoring the resource allocation problem in wireless systems. In this paper, we consider a downlink resource allocation problem, where a base station (BS) jointly optimizes the compression ratio (CR) and power allocation as well as resource block (RB) assignment of each user according to the latency and performance constraints to maximize the number of users that successfully receive their requested content with desired quality. To solve this problem, we first decompose it into two subproblems without loss of optimality. The first subproblem is to minimize the required transmission power for each user under given RB allocation. We derive the closed-form expression of the optimal transmit power by searching the maximum feasible compression ratio. The second one aims at maximizing the number of supported users through optimal user-RB pairing, which we solve by utilizing bisection search as well as Karmarka' s algorithm. Simulation results validate the effectiveness of the proposed resource allocation method in terms of the number of satisfied users with given resources.