论文标题

通过特定于概念的解释揭示细分和对象检测中隐藏的上下文偏差

Revealing Hidden Context Bias in Segmentation and Object Detection through Concept-specific Explanations

论文作者

Dreyer, Maximilian, Achtibat, Reduan, Wiegand, Thomas, Samek, Wojciech, Lapuschkin, Sebastian

论文摘要

将传统的事后归因方法应用于分割或对象检测预测变量仅提供有限的见解,因为在输入级别获得的特征归因图通常类似于模型的预测分割掩码或边界框。在这项工作中,我们通过提出可解释的可解释的人工智能方法L-CRP来生成解释,以自动识别和可视化模型在推理期间所学,认可和使用相关概念,并在输入空间中精确找到它们。因此,我们的方法超越了单数输入级归因图,并且作为基于最近发表的概念相关性传播技术的方法,它有效地适用于细分和对象检测中的最先进的黑盒体系结构,例如DeepLabv3+和Yolov6等。我们通过定量比较不同的概念归因方法来验证我们提出的技术的忠诚,并讨论对流行数据集(例如CityScapes,Pascal VOC和MS Coco 2017)的解释复杂性的影响。精确定位和交流概念的能力可用于揭示和验证背景功能的使用,并在此启示,并验证该模型的使用。

Applying traditional post-hoc attribution methods to segmentation or object detection predictors offers only limited insights, as the obtained feature attribution maps at input level typically resemble the models' predicted segmentation mask or bounding box. In this work, we address the need for more informative explanations for these predictors by proposing the post-hoc eXplainable Artificial Intelligence method L-CRP to generate explanations that automatically identify and visualize relevant concepts learned, recognized and used by the model during inference as well as precisely locate them in input space. Our method therefore goes beyond singular input-level attribution maps and, as an approach based on the recently published Concept Relevance Propagation technique, is efficiently applicable to state-of-the-art black-box architectures in segmentation and object detection, such as DeepLabV3+ and YOLOv6, among others. We verify the faithfulness of our proposed technique by quantitatively comparing different concept attribution methods, and discuss the effect on explanation complexity on popular datasets such as CityScapes, Pascal VOC and MS COCO 2017. The ability to precisely locate and communicate concepts is used to reveal and verify the use of background features, thereby highlighting possible biases of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源