论文标题

使用缩放区域分布选择嵌入参数

Using scaling-region distributions to select embedding parameters

论文作者

Deshmukh, Varad, Meikle, Robert, Bradley, Elizabeth, Meiss, James D., Garland, Joshua

论文摘要

使用时间延迟嵌入从标量数据中重建状态空间动态需要选择延迟$τ$和尺寸$ m $的值。这两个参数对于过程的成功至关重要,也不容易正式验证。虽然嵌入定理确实为这些选择提供了正式的指导,但实际上,必须诉诸启发式方法,例如Fraser&Swinney的平均共同信息(AMI)$τ$或kennel et al的False近邻居(FNN)方法。对于$ m $。最佳实践提出了一种迭代方法:这些启发式方法之一用于对相应的自由参数进行良好的第一猜测,然后使用“渐近不变”方法来巩固其值,例如,计算相关维度或Lyapunov指数的价值范围并寻找融合。这个过程可以是主观的,因为这些计算通常涉及在图中找到并拟合一条线的缩放区域:通常是通过眼睛完成的过程,并且不能免疫确认偏差。此外,这些启发式方法中的大多数没有提供置信区间,因此很难说“融合”是什么。在这里,我们提出了一种自动化第一步,消除主观性并为第二步进行正式的方法,为收敛提供了统计测试。我们的方法基于一种最近开发的自动缩放区域选择方法,其中包括结果的置信区间。我们通过选择几个真实和模拟动力学系统的嵌入维数值来证明这种方法。我们将这些结果与FNN产生的结果进行了比较,并将其验证与已知结果(例如相关维度)相比,在这些结果中可用。我们注意到,该方法扩展到延迟重建理论或实践中的任何自由参数。

Reconstructing state-space dynamics from scalar data using time-delay embedding requires choosing values for the delay $τ$ and the dimension $m$. Both parameters are critical to the success of the procedure and neither is easy to formally validate. While embedding theorems do offer formal guidance for these choices, in practice one has to resort to heuristics, such as the average mutual information (AMI) method of Fraser & Swinney for $τ$ or the false near neighbor (FNN) method of Kennel et al. for $m$. Best practice suggests an iterative approach: one of these heuristics is used to make a good first guess for the corresponding free parameter and then an "asymptotic invariant" approach is then used to firm up its value by, e.g., computing the correlation dimension or Lyapunov exponent for a range of values and looking for convergence. This process can be subjective, as these computations often involve finding, and fitting a line to, a scaling region in a plot: a process that is generally done by eye and is not immune to confirmation bias. Moreover, most of these heuristics do not provide confidence intervals, making it difficult to say what "convergence" is. Here, we propose an approach that automates the first step, removing the subjectivity, and formalizes the second, offering a statistical test for convergence. Our approach rests upon a recently developed method for automated scaling-region selection that includes confidence intervals on the results. We demonstrate this methodology by selecting values for the embedding dimension for several real and simulated dynamical systems. We compare these results to those produced by FNN and validate them against known results -- e.g., of the correlation dimension -- where these are available. We note that this method extends to any free parameter in the theory or practice of delay reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源