论文标题
矢量$ p $ aary弱规则弯曲功能的次要结构
Secondary constructions of vectorial $p$-ary weakly regular bent functions
论文作者
论文摘要
在\ cite {Bapic,Tang,Zheng}中引入了一种新的方法,用于通过所谓的$(P_U)$属性进行二级构造/布尔式弯曲函数。在2018年,Qi等人。在\ cite {tang}中概括了构建$ p $弱规则弯曲功能的方法。本文的目的是遵循\ cite {bapic,zheng}的思想进一步概括这些结构,以介绍矢量$ p $ p $ p $ p $ p $ difflassion弱规则弯曲和平稳的功能的次级结构。我们还通过$ P $ -ARY MAIORANA-MCFARLAND类介绍了一些此类功能的无限家庭。此外,我们通过二阶导数给出了$ p $ - yar的$(p_u)$属性的另一个表征,因为它是在\ cite {zheng}中为布尔案例完成的。
In \cite{Bapic, Tang, Zheng} a new method for the secondary construction of vectorial/Boolean bent functions via the so-called $(P_U)$ property was introduced. In 2018, Qi et al. generalized the methods in \cite{Tang} for the construction of $p$-ary weakly regular bent functions. The objective of this paper is to further generalize these constructions, following the ideas in \cite{Bapic, Zheng}, for secondary constructions of vectorial $p$-ary weakly regular bent and plateaued functions. We also present some infinite families of such functions via the $p$-ary Maiorana-McFarland class. Additionally, we give another characterization of the $(P_U)$ property for the $p$-ary case via second-order derivatives, as it was done for the Boolean case in \cite{Zheng}.