论文标题
内在品种
Immanant varieties
论文作者
论文摘要
我们介绍与有限群体的简单字符相关的内在品种。它们包括经过良好的品种类别,包括塞格尔嵌入,司芒和某些其他类别的食物品种。对于一维角色$χ$,我们通过最大属性来定义$χ$ -MATROIDS。对于微不足道的字符,通过探索入射率分层的组合,我们为相应内置品种的Chow矢量空间提供了一组发电机。
We introduce immanant varieties, associated to simple characters of a finite group. They include well-studied classes of varieties, as Segre embeddings, Grassmannians and certain other classes of Chow varieties. For a one-dimensional character $χ$, we define $χ$-matroids by a maximality property. For trivial characters, by exploring the combinatorics of incidence stratifications, we provide a set of generators for the Chow vector spaces of the corresponding immanant varieties.