论文标题

改进了弗兰克尔联盟锁定的猜想的下限

Improved Lower Bound for Frankl's Union-Closed Sets Conjecture

论文作者

Alweiss, Ryan, Huang, Brice, Sellke, Mark

论文摘要

我们验证了吉尔默(Gilmer)最近提出的明确不平等,因此证明,对于任何非公开的联盟封闭的家庭$ f \ subseteq 2^{[n]} $,在[n] $中包含一些$ i \ in [n] $,至少在$ \ frac {3- \ frac {3- \ \ sqrt {5}}} $ 0.38 $ 0.38中。通过计算机计算检查一种情况,即明确的单变量不等式。

We verify an explicit inequality conjectured recently by Gilmer, thus proving that for any nonempty union-closed family $F \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $F$. One case, an explicit one-variable inequality, is checked by computer calculation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源