论文标题

Sparf:稀疏和嘈杂姿势的神经辐射场

SPARF: Neural Radiance Fields from Sparse and Noisy Poses

论文作者

Truong, Prune, Rakotosaona, Marie-Julie, Manhardt, Fabian, Tombari, Federico

论文摘要

神经辐射场(NERF)最近已成为合成逼真的新颖观点的有力表示。在表现出令人印象深刻的性能的同时,它依赖于具有高度准确的相机姿势的密集输入视图的可用性,从而限制了其在现实情况下的应用。在这项工作中,我们介绍了稀疏的姿势调节辐射场(SPARF),以应对新颖视图合成的挑战,只有很少的宽基线输入图像(低至3),带有嘈杂的相机姿势。我们的方法利用了多视图几何约束,以共同学习NERF并完善相机的姿势。通过依靠在输入视图之间提取的像素匹配,我们的多视图对应关系目标强制实施优化的场景和相机姿势,以收敛到全局和几何准确的解决方案。从任何角度来看,我们的深度一致性损失进一步鼓励了重建的场景是一致的。我们的方法在多个具有挑战性的数据集上的稀疏视图制度中设置了新的最新状态。

Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multi-view correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源