论文标题

GalaxyFlow:为逼真的模拟恒星目录提高水动力模拟

GalaxyFlow: Upsampling Hydrodynamical Simulations for Realistic Mock Stellar Catalogs

论文作者

Lim, Sung Hak, Raman, Kailash A., Buckley, Matthew R., Shih, David

论文摘要

星系的宇宙N体模拟在“恒星颗粒”的水平上运行,其质量分辨率是数千个太阳能的规模。将这些模拟变成恒星模拟目录需要“将”恒星颗粒“抬高”后,遵循相同的相空间密度。在本文中,我们介绍了两种新的提升方法。首先,我们描述了GalaxyFlow,这是一种复杂的上采样方法,该方法利用归一化的流量来估计恒星相空间密度和从中进行样品。其次,我们利用最大似然估计来改进现有的UPS采样器,以提高密度估计精度和UPS采样结果的方式来微调此类算法的带宽。我们在两个模拟星系:Auriga 6和H277中展示了在太阳位置的邻里上的提升采样技术。两者都产生平滑的恒星分布,与Gaia DR3目录中看到的恒星密度非常相似。此外,我们引入了一种新型的多模型分类器测试,以定量地比较不同上采样方法的准确性。该测试证实了GalaxyFlow比基于内核密度估计的方法更准确地估算了基础恒星颗粒的密度,而其成本更高。

Cosmological N-body simulations of galaxies operate at the level of "star particles" with a mass resolution on the scale of thousands of solar masses. Turning these simulations into stellar mock catalogs requires "upsampling" the star particles into individual stars following the same phase-space density. In this paper, we introduce two new upsampling methods. First, we describe GalaxyFlow, a sophisticated upsampling method that utilizes normalizing flows to both estimate the stellar phase space density and sample from it. Second, we improve on existing upsamplers based on adaptive kernel density estimation, using maximum likelihood estimation to fine-tune the bandwidth for such algorithms in a way that improves both the density estimation accuracy and upsampling results. We demonstrate our upsampling techniques on a neighborhood of the Solar location in two simulated galaxies: Auriga 6 and h277. Both yield smooth stellar distributions that closely resemble the stellar densities seen in the Gaia DR3 catalog. Furthermore, we introduce a novel multi-model classifier test to compare the accuracy of different upsampling methods quantitatively. This test confirms that GalaxyFlow estimates the density of the underlying star particles more accurately than methods based on kernel density estimation, at the cost of being more computationally intensive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源