论文标题

自适应动态过滤网络用于图像denoising

Adaptive Dynamic Filtering Network for Image Denoising

论文作者

Shen, Hao, Zhao, Zhong-Qiu, Zhang, Wandi

论文摘要

在图像denoising网络中,特征缩放被广泛用于扩大接受场大小并降低计算成本。但是,这种做法也导致了高频信息的丢失,并且未能考虑尺度内特征。最近,动态卷积在处理高频信息(例如边缘,角落,纹理)方面具有强大的功能,但以前的作品缺乏过滤器生成中足够的空间上下文信息。为了减轻这些问题,我们建议采用动态卷积来改善高频和多尺度功能的学习。具体而言,我们设计了一个空间增强的内核生成(SEKG)模块,以改善动态卷积,从而能够以非常低的计算复杂性来学习空间上下文信息。基于SEKG模块,我们提出了一个动态卷积块(DCB)和一个多尺度动态卷积块(MDCB)。前者通过动态卷积增强了高频信息,并通过跳过连接来保留低频信息。后者利用共享的自适应动态内核和扩张卷积的想法来实现有效的多尺度特征提取。所提出的多维特征集成(MFI)机制进一步融合了多尺度功能,提供精确且上下文丰富的特征表示。最后,我们使用拟议的DCB和MDCB建立了一个高效的Denoising网络,名为ADFNET。它在现实世界和合成高斯嘈杂数据集上的计算复杂性低下,可以取得更好的性能。源代码可在https://github.com/it-hao/adfnet上找到。

In image denoising networks, feature scaling is widely used to enlarge the receptive field size and reduce computational costs. This practice, however, also leads to the loss of high-frequency information and fails to consider within-scale characteristics. Recently, dynamic convolution has exhibited powerful capabilities in processing high-frequency information (e.g., edges, corners, textures), but previous works lack sufficient spatial contextual information in filter generation. To alleviate these issues, we propose to employ dynamic convolution to improve the learning of high-frequency and multi-scale features. Specifically, we design a spatially enhanced kernel generation (SEKG) module to improve dynamic convolution, enabling the learning of spatial context information with a very low computational complexity. Based on the SEKG module, we propose a dynamic convolution block (DCB) and a multi-scale dynamic convolution block (MDCB). The former enhances the high-frequency information via dynamic convolution and preserves low-frequency information via skip connections. The latter utilizes shared adaptive dynamic kernels and the idea of dilated convolution to achieve efficient multi-scale feature extraction. The proposed multi-dimension feature integration (MFI) mechanism further fuses the multi-scale features, providing precise and contextually enriched feature representations. Finally, we build an efficient denoising network with the proposed DCB and MDCB, named ADFNet. It achieves better performance with low computational complexity on real-world and synthetic Gaussian noisy datasets. The source code is available at https://github.com/it-hao/ADFNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源