论文标题

混乱与当地批判性在多体系统中争夺动态的签名

Signatures of the interplay between chaos and local criticality on the dynamics of scrambling in many-body systems

论文作者

Meier, Felix, Steinhuber, Mathias, Urbina, Juan Diego, Waltner, Daniel, Guhr, Thomas

论文摘要

快速争夺,通过超时订购的相关器(OTOC)的指数初始增长来量化,是能够在交互系统的自由度之间有效传播量子相关性的能力,并且构成了局部不稳定动态的特征性标志。因此,它可能同样体现在显示混乱的系统或围绕关键性的集成系统中。在这里,我们超越了这些极端政权,对在复杂的相空间区域的局部关键和混乱之间的相互作用进行了详尽的研究,首先出现了综合性 - chaos转换。我们以明确定义的经典(平均场)极限来解决系统,因为耦合了大型旋转和玻色式链条,因此可以进行半经典分析。我们的目的是调查OTOC的指数增长的依赖性,定义量子Lyapunov指数$λ_{\ textrm {q}} $对来自经典系统的数量的数量,具有混合相位空间,特别是固定点$λ_{\ textrm的局部稳定性指数$λ_ {\ textrm {l}} $周围的混乱区域。通过大量的数值模拟涵盖了广泛的参数,我们为猜想的线性依赖性提供了支持,$2λ_ {\ textrm {q}} =aλ_{\ textrm {\ textrm {l}}+bλ_ {\ textrm {loc {loc {loc {loc}} $,以简单的路由在CHA中提供了一个简单的路由。

Fast scrambling, quantified by the exponential initial growth of Out-of-Time-Ordered-Correlators (OTOCs), is the ability to efficiently spread quantum correlations among the degrees of freedom of interacting systems, and constitutes a characteristic signature of local unstable dynamics. As such, it may equally manifest both in systems displaying chaos or in integrable systems around criticality. Here, we go beyond these extreme regimes with an exhaustive study of the interplay between local criticality and chaos right at the intricate phase space region where the integrability-chaos transition first appears. We address systems with a well defined classical (mean-field) limit, as coupled large spins and Bose-Hubbard chains, thus allowing for semiclassical analysis. Our aim is to investigate the dependence of the exponential growth of the OTOCs, defining the quantum Lyapunov exponent $λ_{\textrm{q}}$ on quantities derived from the classical system with mixed phase space, specifically the local stability exponent of a fixed point $λ_{\textrm{loc}}$ as well as the maximal Lyapunov exponent $λ_{\textrm{L}}$ of the chaotic region around it. By extensive numerical simulations covering a wide range of parameters we give support to a conjectured linear dependence $2λ_{\textrm{q}}=aλ_{\textrm{L}}+bλ_{\textrm{loc}}$, providing a simple route to characterize scrambling at the border between chaos and integrability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源