论文标题

关于恒星着色的结构参数化

On Structural Parameterizations of Star Coloring

论文作者

Bhyravarapu, Sriram, Reddy, I. Vinod

论文摘要

图G的星形着色是适当的顶点着色,因此四个顶点上的每个路径至少都使用三种不同的颜色。这种G的恒星着色所需的最小颜色数量称为星形数字,用χ_s(G)表示。给定图G和一个正整数K,恒星着色问题询问$ g $是否具有最多使用K颜色的星形着色。即使在诸如双方图形之类的受限制的图类别上,此问题也是NP完整的。 在本文中,我们从参数化的复杂性角度开始研究恒星着色。我们表明,当通过(a)邻域多样性,(b)双胞胎覆盖和(c)组合参数集合宽度和颜色的数量进行参数化时,恒星着色是固定参数。

A Star Coloring of a graph G is a proper vertex coloring such that every path on four vertices uses at least three distinct colors. The minimum number of colors required for such a star coloring of G is called star chromatic number, denoted by χ_s(G). Given a graph G and a positive integer k, the STAR COLORING PROBLEM asks whether $G$ has a star coloring using at most k colors. This problem is NP-complete even on restricted graph classes such as bipartite graphs. In this paper, we initiate a study of STAR COLORING from the parameterized complexity perspective. We show that STAR COLORING is fixed-parameter tractable when parameterized by (a) neighborhood diversity, (b) twin-cover, and (c) the combined parameters clique-width and the number of colors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源