论文标题
Spin-nerf:多视图分割和神经辐射场的感知镶嵌
SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields
论文作者
论文摘要
神经辐射场(NERF)已成为一种流行的新视图合成方法。虽然NERF迅速适应了更广泛的应用程序,但直观地编辑NERF场景仍然是一个开放的挑战。一项重要的编辑任务是从3D场景中删除不需要的对象,因此替换的区域在视觉上是合理的,并且与其上下文一致。我们将此任务称为3D inpainting。在3D中,解决方案必须在多个视图中保持一致,并且在几何上有效。在本文中,我们提出了一种解决这些挑战的新颖3D涂上方法。给定单个输入图像中的一小部分摆姿势图像和稀疏注释,我们的框架首先迅速获得目标对象的3D分割掩码。然后,介绍了一种基于感知优化的方法,介绍了杠杆学习的2D图像Inpainter,将其信息提炼成3D空间,同时确保视图一致性。我们还通过引入一个由挑战性现实世界的场景组成的数据集来解决缺乏用于评估3D场景介绍方法的不同基准。特别是,我们的数据集包含带有和没有目标对象的同一场景的视图,从而实现了3D授课任务的更有原则性的基准测试。我们首先证明了我们的方法对多视图分割的优越性,与基于nerfb的方法和2D分割方法相比。然后,我们评估3D插入的任务,建立针对其他NERF操纵算法的最先进的性能,以及强大的2D图像Inpainter基线。项目页面:https://spinnerf3d.github.io
Neural Radiance Fields (NeRFs) have emerged as a popular approach for novel view synthesis. While NeRFs are quickly being adapted for a wider set of applications, intuitively editing NeRF scenes is still an open challenge. One important editing task is the removal of unwanted objects from a 3D scene, such that the replaced region is visually plausible and consistent with its context. We refer to this task as 3D inpainting. In 3D, solutions must be both consistent across multiple views and geometrically valid. In this paper, we propose a novel 3D inpainting method that addresses these challenges. Given a small set of posed images and sparse annotations in a single input image, our framework first rapidly obtains a 3D segmentation mask for a target object. Using the mask, a perceptual optimizationbased approach is then introduced that leverages learned 2D image inpainters, distilling their information into 3D space, while ensuring view consistency. We also address the lack of a diverse benchmark for evaluating 3D scene inpainting methods by introducing a dataset comprised of challenging real-world scenes. In particular, our dataset contains views of the same scene with and without a target object, enabling more principled benchmarking of the 3D inpainting task. We first demonstrate the superiority of our approach on multiview segmentation, comparing to NeRFbased methods and 2D segmentation approaches. We then evaluate on the task of 3D inpainting, establishing state-ofthe-art performance against other NeRF manipulation algorithms, as well as a strong 2D image inpainter baseline. Project Page: https://spinnerf3d.github.io