论文标题

基于扩展的von Karman的动量理论,关于自由落体对称楔的水的参数研究

Parametric study on the water impacting of a free-falling symmetric wedge based on the extended von Karman's momentum theory

论文作者

Lu, Yujin, Del Buono, Alessandro, Xiao, Tianhang, Iafrati, Alessandro, Xu, Jinfa, Deng, Shuanghou, Chen, Jichang

论文摘要

本研究涉及在对称楔形物的水影响过程中发生的峰值加速度azmax。这方面对于安全海洋车辆的设计考虑可能很重要。首先,使用不可压缩的Navier-Stokes方程和捕获空气水接口的流体量方法来研究水上问题的数值研究。通过与楔形的自由秋季水进入的实验数据进行比较,可以验证网格尺寸和时间步长的选择。本文的关键原始贡献涉及AZMAX关系的推导(以及AZMAX发生时的相关参数),基于von Karman动量理论的转换,最初的速度,死亡角度和楔子的质量是随着堆积​​效应的包含而扩展的。然后,研究了以恒定速度进入水的堆积系数,该系数依赖于死亡角度,然后研究了自由秋季运动,并且依赖于Dobrovol'skaya的依赖性定律仍然有效,以确保变化的死rise角度。使用扩展的von Karman动量理论提供了相对较广泛的初始速度,死亡角度和质量范围的合理良好理论估计,这是原始的von Karman方法和Dobrovol'sskaya的结合,并且可以扩展这种理论方法,以预测Kinematic参数的阶段。

The present study is concerned with the peak acceleration azmax occurring during the water impact of a symmetric wedge. This aspect can be important for design considerations of safe marine vehicles. The water-entry problem is firstly studied numerically using the finite-volume discretization of the incompressible Navier-Stokes equations and the volume-of-fluid method to capture the air-water interface. The choice of the mesh size and time-step is validated by comparison with experimental data of a free fall water-entry of a wedge. The key original contribution of the article concerns the derivation of a relationship for azmax (as well as the correlated parameters when azmax occurs), the initial velocity, the deadrise angle and the mass of the wedge based on the transformation of von Karman momentum theory which is extended with the inclusion of the pile-up effect. The pile-up coefficient, which has been proven dependent on the deadrise angle in the case of water-entry with a constant velocity, is then investigated for the free fall motion and the dependence law derived from Dobrovol'skaya is still valid for varying deadrise angle. Reasonable good theoretical estimates of the kinematic parameters are provided for a relatively wide range of initial velocity, deadrise angle and mass using the extended von Karman momentum theory which is the combination of the original von Karman method and Dobrovol'skaya's solution and this theoretical approach can be extended to predict the kinematic parameters during the whole impacting phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源