论文标题
ZnO包裹的石墨烯量子点中光激发状态的性质
Nature of photoexcited states in ZnO-embedded graphene quantum dots
论文作者
论文摘要
宽带间隙半导体(例如氧化锌(ZnO)和石墨烯量子点(GQD))的组合是调整GQD的光电特性并发展新功能的有前途的策略。在这里,我们报告了一个尚未合成的杂种材料的理论设计,该材料由ZnO簇组成,周围是碳部分,以下称为ZnO填充的石墨烯量子点。它们的结构和光吸收特性得到了对光激发状态的性质的深入分析。通过估计凝聚力和执行振动模式分析来研究具有n = 1、3、4、7、12和27的(ZnO)NC96-2N系统的稳定性。揭示和讨论了杂种材料对ZnO对量的结构和光电特性的强烈依赖性。对于高度对称(ZnO)27C42系统,观察到与碳部分振动相关的拉曼模式的强光吸收和意外增强,这使其成为理想的研究主题。互补激发态分析,电荷密度差异(CDD)分析和交流电荷转移分析使能够深入了解激发态的性质。 (ZnO)27C42在宽带光吸收中局部激发状态的双重变性局部贡献。目前的结果有助于阐明ZnO填充的石墨烯量子点中光吸收的基本内部机制的性质,从而为未来的低维金属氧基氧碳材料家族的实验研究提供了科学背景。
The combination of wide-band gap semiconductors like zinc oxide (ZnO) and graphene quantum dots (GQDs) is a promising strategy to tune optoelectronic properties of GQDs and to develop new functionalities. Here we report on a theoretical design of not-yet-synthesized hybrid materials composed of ZnO clusters surrounded by carbon moieties, hereinafter referred to as ZnO-embedded graphene quantum dots. Their structure and light absorption properties are presented, with an in-depth analysis of the nature of the photoexcited states. The stability of the (ZnO)nC96-2n system with n=1, 3, 4, 7, 12 and 27 is investigated by estimating cohesive energy and performing vibrational mode analysis. A strong dependence of the structural and optoelectronic properties of the hybrid material on the amount of ZnO pairs is revealed and discussed. A strong light absorption and unexpected enhancement of Raman modes related to the vibrations in carbon moiety are observed for highly symmetric (ZnO)27C42 system that makes it an ideal study subject. Complementary excited state analysis, charge density difference (CDD) analysis and interfragment charge transfer analysis enabled reaching deep insights into the nature of the excited states. A dominating contribution of doubly degenerate locally excited states in broadband light absorption by (ZnO)27C42 is identified. The present results are helpful to elucidate the nature of the fundamental internal mechanisms underlying the light absorption in ZnO-embedded graphene quantum dots, thereby providing a scientific background for future experimental study of low-dimensional metal-oxygen-carbon materials family.