论文标题
c周期体积中的受限带电颗粒
Confined Charged Particles in C-periodic Volumes
论文作者
论文摘要
在阿贝尔库仑相中的带电颗粒是非本地式碎片,被软光子云所包围,延伸至无穷大。高斯定律可防止在周期性的体积中存在带电的颗粒。另一方面,在$ c $ - 周期性的体积中,可以定期充电共轭。这包括$ 3 $ -D XY模型中的涡流,$ 4 $ -D $ -D $ \ MATHRM {U}(1)$量规理论的磁性单极,以及质子和其他带电的粒子,QCD耦合到QED。在四个维度中,非亚伯指控被限制。因此,在无限量的非亚伯式基础粒子中,花费了无限的能量。但是,在$ c $的周期卷中,非亚伯式基础颗粒(其能量与盒子大小线性增加)确实可以存在。调查这些州有望加深我们对监禁的理解。
Charged particles in an Abelian Coulomb phase are non-local infraparticles that are surrounded by a cloud of soft photons which extends to infinity. Gauss' law prevents the existence of charged particles in a periodic volume. In a $C$-periodic volume, which is periodic up to charge conjugation, on the other hand, charged particles can exist. This includes vortices in the $3$-d XY-model, magnetic monopoles in $4$-d $\mathrm{U}(1)$ gauge theory, as well as protons and other charged particles in QCD coupled to QED. In four dimensions non-Abelian charges are confined. Hence, in an infinite volume non-Abelian infraparticles cost an infinite amount of energy. However, in a $C$-periodic volume non-Abelian infraparticles (whose energy increases linearly with the box size) can indeed exist. Investigating these states holds the promise of deepening our understanding of confinement.