论文标题

通过物理知识转移来增强个性化的肌肉骨骼建模

Boosting Personalised Musculoskeletal Modelling with Physics-informed Knowledge Transfer

论文作者

Zhang, Jie, Zhao, Yihui, Bao, Tianzhe, Li, Zhenhong, Qian, Kun, Frangi, Alejandro F., Xie, Sheng Quan, Zhang, Zhi-Qiang

论文摘要

由于肌肉骨骼建模的概念直观和快速实现,数据驱动的方法变得越来越突出。但是,使用来自特定主题的数据的预训练数据驱动的模型的性能在使用新主题的数据进行验证时可能会严重降低,从而阻碍了临床应用中个性化肌肉骨骼模型的实用性。本文开发了一个活跃的物理学深度传递学习框架,以增强在看不见的数据上肌肉骨骼模型的动态跟踪能力。提出的框架的显着优势是双重的:1)对于通用模型,基于物理的域知识嵌入到数据驱动模型的损失函数中,作为软约束,以惩罚/正常数据驱动的模型。 2)对于个性化模型,与特征提取有关的参数将直接从通用模型继承,并且只有与特定于主题的推理有关的参数可以通过共同最大程度地减少常规数据预测损失和基于修改的物理基础损失来确定。在本文中,我们将同步肌肉力和关节运动学预测从表面肌电图(SEMG)作为示例来说明所提出的框架。此外,卷积神经网络(CNN)被用作深度神经网络来实施所提出的框架,并且将肌肉力量与关节运动学之间的物理定律用作软约束。来自八个健康受试者的自我收集数据集的全面实验的结果表明,该框架的有效性和概括性。

Data-driven methods have become increasingly more prominent for musculoskeletal modelling due to their conceptually intuitive simple and fast implementation. However, the performance of a pre-trained data-driven model using the data from specific subject(s) may be seriously degraded when validated using the data from a new subject, hindering the utility of the personalised musculoskeletal model in clinical applications. This paper develops an active physics-informed deep transfer learning framework to enhance the dynamic tracking capability of the musculoskeletal model on the unseen data. The salient advantages of the proposed framework are twofold: 1) For the generic model, physics-based domain knowledge is embedded into the loss function of the data-driven model as soft constraints to penalise/regularise the data-driven model. 2) For the personalised model, the parameters relating to the feature extraction will be directly inherited from the generic model, and only the parameters relating to the subject-specific inference will be finetuned by jointly minimising the conventional data prediction loss and the modified physics-based loss. In this paper, we use the synchronous muscle forces and joint kinematics prediction from surface electromyogram (sEMG) as the exemplar to illustrate the proposed framework. Moreover, convolutional neural network (CNN) is employed as the deep neural network to implement the proposed framework, and the physics law between muscle forces and joint kinematics is utilised as the soft constraints. Results of comprehensive experiments on a self-collected dataset from eight healthy subjects indicate the effectiveness and great generalization of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源