论文标题
带有PointNet的Galaxy红移调查的宇宙学
Cosmology from Galaxy Redshift Surveys with PointNet
论文作者
论文摘要
近年来,深度学习方法已在分析点云数据的分析中取得了最新的结果。在宇宙学中,Galaxy Redshift调查类似于空间中的置换位置的置换集合。到目前为止,这些调查主要通过两点统计(例如功率谱和相关函数)进行了分析。这些摘要统计数据的用法最好是在密度字段是线性和高斯的大尺度上。但是,鉴于即将进行的调查预期的精度提高,对本质上非高斯 - 小角度分离的分析代表了更好地限制宇宙学参数的吸引力的途径。在这项工作中,我们旨在通过采用\ textIt {pointNet}类似神经网络来改进两点统计,直接从点云数据直接从宇宙学参数的值回归。我们的PointNets实施可以分析$ \ Mathcal {O}(10^4) - \ Mathcal {O}(10^5)$ GALAXIES的输入,这可以通过大约两个范围的级数来改善此应用程序的早期工作。此外,我们证明了在给定的固定红移时,可以分析LightCone的Galaxy红移调查数据,而不是先前的静态仿真框。
In recent years, deep learning approaches have achieved state-of-the-art results in the analysis of point cloud data. In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space. These surveys have so far mostly been analysed with two-point statistics, such as power spectra and correlation functions. The usage of these summary statistics is best justified on large scales, where the density field is linear and Gaussian. However, in light of the increased precision expected from upcoming surveys, the analysis of -- intrinsically non-Gaussian -- small angular separations represents an appealing avenue to better constrain cosmological parameters. In this work, we aim to improve upon two-point statistics by employing a \textit{PointNet}-like neural network to regress the values of the cosmological parameters directly from point cloud data. Our implementation of PointNets can analyse inputs of $\mathcal{O}(10^4) - \mathcal{O}(10^5)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude. Additionally, we demonstrate the ability to analyse galaxy redshift survey data on the lightcone, as opposed to previously static simulation boxes at a given fixed redshift.