论文标题
无数列出了符合序列的置换式课程
Uncountably many enumerations of well-quasi-ordered permutation classes
论文作者
论文摘要
我们构建了一个不可数的序列排列类别,每个家族都有不同的枚举序列。这反驳了一个猜想,所有标准排序的置换类别具有代数生成函数,实际上表明许多这样的类缺乏d-finite或d-Elgebraic生成函数。我们的构造基于由于pouzet而导致的大量因子封闭,序列序的二进制语言的集合。
We construct an uncountable family of well-quasi-ordered permutation classes, each with a distinct enumeration sequence. This disproves a conjecture that all well-quasi-ordered permutation classes have algebraic generating functions, and in fact shows that many such classes lack D-finite or D-algebraic generating functions. Our construction is based on an uncountably large collection of factor-closed, well-quasi-ordered binary languages due to Pouzet.