论文标题

如何验证机器学习的原子间电位

How to validate machine-learned interatomic potentials

论文作者

Morrow, Joe D., Gardner, John L. A., Deringer, Volker L.

论文摘要

机器学习(ML)方法可实现具有近量化机械精度的大规模原子模拟。随着这些方法的日益增长的可用性,需要仔细验证,尤其是对于物理上不可知的模型,也就是说,对于从参考数据中提取原子相互作用的性质的潜力。在这里,我们回顾了ML电位背后的基本原理及其对原子尺度材料建模的验证。我们讨论基于数值绩效以及物理指导验证的定义错误指标的最佳实践。我们提出了具体的建议,希望我们对更广泛的社区有用,包括打算使用ML潜力来“架子上”的材料的研究人员。

Machine learning (ML) approaches enable large-scale atomistic simulations with near-quantum-mechanical accuracy. With the growing availability of these methods there arises a need for careful validation, particularly for physically agnostic models - that is, for potentials which extract the nature of atomic interactions from reference data. Here, we review the basic principles behind ML potentials and their validation for atomic-scale materials modeling. We discuss best practice in defining error metrics based on numerical performance as well as physically guided validation. We give specific recommendations that we hope will be useful for the wider community, including those researchers who intend to use ML potentials for materials "off the shelf".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源