论文标题

大地数据和机器学习,用于可持续和弹性农业

Big Earth Data and Machine Learning for Sustainable and Resilient Agriculture

论文作者

Sitokonstantinou, Vasileios

论文摘要

来自卫星或其他平台(例如,无人机和手机)的大量地球图像越来越低或无需成本,并具有增强的时空分辨率。本论文认识到我们时代的高质量和开放访问地球观察数据提供的前所未有的机会,并介绍了新颖的机器学习和大数据方法,以正确地利用它们来开发可持续和韧性的农业。该论文介绍了三个不同的主题领域,即对共同农业政策(CAP)的监测,粮食安全的监测以及智能和弹性农业的应用。与三个主题领域有关的发展的方法论创新解决了以下问题:i)处理大地观察(EO)数据,ii)机器学习模型培训和III的带注释数据的稀缺性)机器学习输出和可操作的建议之间的差距。 该论文证明了如何使用大数据立方体,分布式学习,链接的开放数据和语义丰富来利用数据洪水和提取知识以满足实际用户需求的方式。此外,本文论证了半监督和无监督的机器学习模型的重要性,从而规避了稀缺注释的详尽挑战,从而允许在时空中进行模型概括。具体而言,显示出仅几乎不需要地面真相数据来产生高质量的作物类型图和作物物候估计。最后,本文认为,在现实世界中的模型推断和决策之间存在相当大的距离,从而展示了因果和可解释的机器学习在弥合这一差距时的力量。

Big streams of Earth images from satellites or other platforms (e.g., drones and mobile phones) are becoming increasingly available at low or no cost and with enhanced spatial and temporal resolution. This thesis recognizes the unprecedented opportunities offered by the high quality and open access Earth observation data of our times and introduces novel machine learning and big data methods to properly exploit them towards developing applications for sustainable and resilient agriculture. The thesis addresses three distinct thematic areas, i.e., the monitoring of the Common Agricultural Policy (CAP), the monitoring of food security and applications for smart and resilient agriculture. The methodological innovations of the developments related to the three thematic areas address the following issues: i) the processing of big Earth Observation (EO) data, ii) the scarcity of annotated data for machine learning model training and iii) the gap between machine learning outputs and actionable advice. This thesis demonstrated how big data technologies such as data cubes, distributed learning, linked open data and semantic enrichment can be used to exploit the data deluge and extract knowledge to address real user needs. Furthermore, this thesis argues for the importance of semi-supervised and unsupervised machine learning models that circumvent the ever-present challenge of scarce annotations and thus allow for model generalization in space and time. Specifically, it is shown how merely few ground truth data are needed to generate high quality crop type maps and crop phenology estimations. Finally, this thesis argues there is considerable distance in value between model inferences and decision making in real-world scenarios and thereby showcases the power of causal and interpretable machine learning in bridging this gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源