论文标题
融合野生动植物调查以改善保护推论
Melding Wildlife Surveys to Improve Conservation Inference
论文作者
论文摘要
集成模型是分析保护物种的流行工具。通常由生成多个数据集的多个实体监测保护关注的物种。单独地,由于空间分辨率低,采样或较大的观察不确定性,这些数据集可能不足以指导管理。集成模型提供了一种在连贯的框架中吸收多个数据集的方法,可以补偿这些缺陷。尽管传统的综合模型已被用来通过生存,繁殖力和收获的调查来吸收计数数据,但它们还可以吸收具有不同时空区域和观察不确定性的生态调查。由较小的草原 - 鸡肉的独立空中调查和地面调查的动机,我们开发了一种集成的建模方法,该方法吸收了从具有不同观察误差来源的调查中得出的密度估计值,该估计是在一个关节框架中,为时空趋势提供了共同的推论。我们使用贝叶斯马尔可夫融合方法对这些数据进行建模,并应用多种数据增强策略进行有效抽样。在一项仿真研究中,我们表明,相对于独立分析调查的模型,我们的集成模型改善了预测性能。我们使用综合模型来促进在未采样区域对较小的草原 - 鸡皮密度的预测,并执行灵敏度分析,以量化与减少的调查工作相关的推论成本。
Integrated models are a popular tool for analyzing species of conservation concern. Species of conservation concern are often monitored by multiple entities that generate several datasets. Individually, these datasets may be insufficient for guiding management due to low spatio-temporal resolution, biased sampling, or large observational uncertainty. Integrated models provide an approach for assimilating multiple datasets in a coherent framework that can compensate for these deficiencies. While conventional integrated models have been used to assimilate count data with surveys of survival, fecundity, and harvest, they can also assimilate ecological surveys that have differing spatio-temporal regions and observational uncertainties. Motivated by independent aerial and ground surveys of lesser prairie-chicken, we developed an integrated modeling approach that assimilates density estimates derived from surveys with distinct sources of observational error into a joint framework that provides shared inference on spatio-temporal trends. We model these data using a Bayesian Markov melding approach and apply several data augmentation strategies for efficient sampling. In a simulation study, we show that our integrated model improved predictive performance relative to models that analyzed the surveys independently. We use the integrated model to facilitate prediction of lesser prairie-chicken density at unsampled regions and perform a sensitivity analysis to quantify the inferential cost associated with reduced survey effort.