论文标题

均匀的索波列夫和besov空间的痕量和延伸定理,用于公制度量空间中无限均匀域

Trace and extension theorems for homogeneous Sobolev and Besov spaces for unbounded uniform domains in metric measure spaces

论文作者

Gibara, Ryan, Shanmugalingam, Nageswari

论文摘要

在本文中,我们修复了$ 1 \ le p <\ infty $,并考虑$(\ om,d,μ)$是无限制的,本地紧凑的,不完整的度量度量空间,配备了双倍量$μ$ $ $ $ $ $ $ p $ p $-poincaré的不平等,因此$ \ om $ $ $ $ $ $ $ $ $ $ $ $ $ \ om $ \ om $ \ om $ \ om $ \ om $ \ om $ \ om \ om $ \ om $ \ om $ \ om $ \ om $ \。我们在dirichlet-sobolev space中意识到函数的痕迹$ d^{1,p}(\ om)$在边界$ \ partial \ om $上作为均质besov besov besov space $ hb^α__{p,p,p}(\ partial \ om)$的函数。在这里,$ \ partial \ om $配备了一个非原子鲍尔常规度量$ν$。我们表明,如果$ν$满足$ 0 <θ<p $ $μ$的$θ$编码状况,那么有一个有界的线性跟踪操作员$ t:d^{1,p}(\ om) $ e:hb^{1-θ/p}(\ partial \ om)\ rightArrow d^{1,p}(\ om)$,是$ t $的右内。

In this paper we fix $1\le p<\infty$ and consider $(\Om,d,μ)$ be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure $μ$ supporting a $p$-Poincaré inequality such that $\Om$ is a uniform domain in its completion $\bar\Om$. We realize the trace of functions in the Dirichlet-Sobolev space $D^{1,p}(\Om)$ on the boundary $\partial\Om$ as functions in the homogeneous Besov space $HB^α_{p,p}(\partial\Om)$ for suitable $α$; here, $\partial\Om$ is equipped with a non-atomic Borel regular measure $ν$. We show that if $ν$ satisfies a $θ$-codimensional condition with respect to $μ$ for some $0<θ<p$, then there is a bounded linear trace operator $T:D^{1,p}(\Om)\rightarrow HB^{1-θ/p}(\partial\Om)$ and a bounded linear extension operator $E:HB^{1-θ/p}(\partial\Om)\rightarrow D^{1,p}(\Om)$ that is a right-inverse of $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源