论文标题

法律语言特定特定特定的义态模态检测

Agent-Specific Deontic Modality Detection in Legal Language

论文作者

Sancheti, Abhilasha, Garimella, Aparna, Srinivasan, Balaji Vasan, Rudinger, Rachel

论文摘要

法律文件通常很长,并用法律人士撰写,这使得外行人特别难以理解其权利和义务。尽管自然语言理解技术对于支持法律领域的这种理解可能是有价值的,但由于雇用专家和隐私问题的成本,法律领域中对能态模式的数据集的可用性有限,这是一种瓶颈。为此,我们介绍了Lexdemod,这是一种用与模态触发器一起表达的关于缔约方或代理商的道态形式注释的英语合同语料库。我们将该数据集基于两个任务进行基准测试:(i)特定于特定于特定的多标签义态模态分类,以及(ii)使用基于变压器的基于变压器(Vaswani等,2017)语言模型的特定于特定代理特定于特定于代理的义态模式和触发跨度检测。转移学习实验表明,LexdeMod中模态表达式的语言多样性从租赁到就业和租赁协议合理地概括了。一个小案例研究表明,在LexdeMod上训练的模型可以检测出高回忆的危险信号。我们相信我们的工作为法律领域中的道态检测提供了新的研究方向。

Legal documents are typically long and written in legalese, which makes it particularly difficult for laypeople to understand their rights and duties. While natural language understanding technologies can be valuable in supporting such understanding in the legal domain, the limited availability of datasets annotated for deontic modalities in the legal domain, due to the cost of hiring experts and privacy issues, is a bottleneck. To this end, we introduce, LEXDEMOD, a corpus of English contracts annotated with deontic modality expressed with respect to a contracting party or agent along with the modal triggers. We benchmark this dataset on two tasks: (i) agent-specific multi-label deontic modality classification, and (ii) agent-specific deontic modality and trigger span detection using Transformer-based (Vaswani et al., 2017) language models. Transfer learning experiments show that the linguistic diversity of modal expressions in LEXDEMOD generalizes reasonably from lease to employment and rental agreements. A small case study indicates that a model trained on LEXDEMOD can detect red flags with high recall. We believe our work offers a new research direction for deontic modality detection in the legal domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源