论文标题
视频实例在阳光和天空下的阴影检测
Video Instance Shadow Detection Under the Sun and Sky
论文作者
论文摘要
实例阴影检测,对于诸如照片编辑和光方向估计等应用的至关重要,在预测阴影实例,对象实例及其关联方面已经取得了重大进步。将此任务扩展到视频提出了注释不同的视频数据的挑战,并解决了由关联内部的遮挡和暂时消失引起的复杂性。为了应对这些挑战,我们介绍了Vishadow,这是一个半监督视频实例的阴影检测框架,该框架利用标记的图像数据和未标记的视频数据进行培训。 Vishadow具有两阶段的训练管道:第一阶段,利用标记的图像数据,通过跨帧配对的对比度学习来标识阴影和对象实例。第二阶段采用未标记的视频,并结合了相关的周期一致性损失以增强跟踪能力。引入了检索机制来管理临时消失,从而确保跟踪连续性。引入了VISD解决方案的定量评估,包括未标记的培训视频和标记的测试视频,包括未标记的培训视频和标记的测试视频,包括未标记的培训视频和标记的测试视频。 Vishadow的有效性通过各种视频级别的应用程序,例如视频介绍,实例克隆,阴影编辑和文本指导的阴影对象操作。
Instance shadow detection, crucial for applications such as photo editing and light direction estimation, has undergone significant advancements in predicting shadow instances, object instances, and their associations. The extension of this task to videos presents challenges in annotating diverse video data and addressing complexities arising from occlusion and temporary disappearances within associations. In response to these challenges, we introduce ViShadow, a semi-supervised video instance shadow detection framework that leverages both labeled image data and unlabeled video data for training. ViShadow features a two-stage training pipeline: the first stage, utilizing labeled image data, identifies shadow and object instances through contrastive learning for cross-frame pairing. The second stage employs unlabeled videos, incorporating an associated cycle consistency loss to enhance tracking ability. A retrieval mechanism is introduced to manage temporary disappearances, ensuring tracking continuity. The SOBA-VID dataset, comprising unlabeled training videos and labeled testing videos, along with the SOAP-VID metric, is introduced for the quantitative evaluation of VISD solutions. The effectiveness of ViShadow is further demonstrated through various video-level applications such as video inpainting, instance cloning, shadow editing, and text-instructed shadow-object manipulation.