论文标题

格拉斯曼尼亚人和统一戴森·布朗尼运动的量子共同体学

Quantum cohomology of the Grassmannian and unitary Dyson Brownian motion

论文作者

Guilhot, Jérémie, Lecouvey, Cédric, Tarrago, Pierre

论文摘要

我们研究了一类通勤马尔可夫内核,其最简单的元素描述了$ k $粒子在一个尺寸$ n $的离散圆圈上的移动,条件是不相互交流。这样的马尔可夫内核与grassmannian的量子共同体学有关,这是一个代数对象,计数分析图,从$ \ m m i \ m athbb {p}^1(\ Mathbb {c})$到k-b-nimennian k-b-nimennian k-b-nimennian j-b-niim vector vector vector suppace of $ \ mathbb aint at coprectition的c} c} c}^n $ $ \ mathbb {p}^1(\ mathbb {c})$。当固定k时,我们获得了约为$ n^2 $ Markov内核的任意产品的浆果定理和局部限制定理。作为这些结果的副产品,我们根据$ su(k)$上的热核得出了grassmannian的量子共同体学环的渐近公式。

We study a class of commuting Markov kernels whose simplest element describes the movement of $k$ particles on a discrete circle of size $n$ conditioned to not intersect each other. Such Markov kernels are related to the quantum cohomology ring of the Grassmannian, which is an algebraic object counting analytic maps from $\mathbb{P}^1(\mathbb{C})$ to the Grassmannian space of k-dimensional vector subspaces of $\mathbb{C}^n$ with prescribed constraints at some points of $\mathbb{P}^1(\mathbb{C})$. We obtain a Berry-Esseen theorem and a local limit theorem for an arbitrary product of approximately $n^2$ Markov kernels belonging to the above class, when k is fixed. As a byproduct of those results, we derive asymptotic formulas for the quantum cohomology ring of the Grassmannian in terms of the heat kernel on $SU (k)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源