论文标题

Eurnet:空间多关系数据的有效多范围关系建模

EurNet: Efficient Multi-Range Relational Modeling of Spatial Multi-Relational Data

论文作者

Xu, Minghao, Guo, Yuanfan, Xu, Yi, Tang, Jian, Chen, Xinlei, Tian, Yuandong

论文摘要

在许多不同的任务中,对数据中的空间关系进行建模仍然至关重要,例如图像分类,语义分割和蛋白质结构理解。以前的工作通常使用统一的解决方案,例如相对位置编码。但是,存在各种类型的空间关系,包括短距离,中范围和远程关系,并且它们分别进行建模可以更好地捕获不同任务的焦点上的多范围关系(例如,在实例分段中,短期关系可能很重要,而长期距离关系应在远程关系中进行较高的关系,以进行较高的语义分割)。在这项工作中,我们介绍了Eurnet,以进行有效的多范围关系建模。 Eurnet构建了多关系图,其中每种类型的边缘对应于短,中或长期空间相互作用。在构造的图中,Eurnet采用了一个新型的建模层,称为门控关系消息传递(GRMP),以在整个数据上传播多关系信息。 GRMP在数据中捕获多个关系,几乎没有额外的计算成本。我们在两个重要领域中研究图像和蛋白质结构建模的eurnet。关于成像网分类,可可对象检测和ADE20K语义分割的广泛实验,验证了Eurnet在先前的SOTA焦点上的增长。在EC和GO蛋白函数预测基准上,Eurnet始终超过先前的SOTA齿轮网。我们的结果证明了Eurnet在对来自各个领域的空间多关系数据建模方面的强度。 Eurnet用于图像建模的实现可在https://github.com/hirl-team/eurnet-image上获得。其他应用域/任务的实现将很快发布。

Modeling spatial relationship in the data remains critical across many different tasks, such as image classification, semantic segmentation and protein structure understanding. Previous works often use a unified solution like relative positional encoding. However, there exists different kinds of spatial relations, including short-range, medium-range and long-range relations, and modeling them separately can better capture the focus of different tasks on the multi-range relations (e.g., short-range relations can be important in instance segmentation, while long-range relations should be upweighted for semantic segmentation). In this work, we introduce the EurNet for Efficient multi-range relational modeling. EurNet constructs the multi-relational graph, where each type of edge corresponds to short-, medium- or long-range spatial interactions. In the constructed graph, EurNet adopts a novel modeling layer, called gated relational message passing (GRMP), to propagate multi-relational information across the data. GRMP captures multiple relations within the data with little extra computational cost. We study EurNets in two important domains for image and protein structure modeling. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation verify the gains of EurNet over the previous SoTA FocalNet. On the EC and GO protein function prediction benchmarks, EurNet consistently surpasses the previous SoTA GearNet. Our results demonstrate the strength of EurNets on modeling spatial multi-relational data from various domains. The implementations of EurNet for image modeling are available at https://github.com/hirl-team/EurNet-Image . The implementations for other applied domains/tasks will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源